Duality Invariance Implies Poincare Invariance

被引:24
作者
Bunster, Claudio [1 ,2 ]
Henneaux, Marc [1 ,3 ,4 ]
机构
[1] Ctr Estudios Cient, Valdivia, Chile
[2] Univ Andres Bello, Santiago, Chile
[3] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
关键词
FIELD;
D O I
10.1103/PhysRevLett.110.011603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider all possible dynamical theories which evolve two transverse vector fields out of a three-dimensional Euclidean hyperplane, subject to only two assumptions: (i) the evolution is local in space, and (ii) the theory is invariant under "duality rotations" of the vector fields into one another. The commutators of the Hamiltonian and momentum densities are shown to be necessarily those of the Poincare group or its zero signature contraction. Space-time structure thus emerges out of the principle of duality. DOI: 10.1103/PhysRevLett.110.011603
引用
收藏
页数:3
相关论文
共 19 条
[1]   POSSIBLE KINEMATICS [J].
BACRY, H ;
LEVYLEBL.JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (10) :1605-&
[2]   OSCILLATORY APPROACH TO A SINGULAR POINT IN RELATIVISTIC COSMOLOGY [J].
BELINSKI.VA ;
KHALATNI.IM ;
LIFSHITZ, EM .
ADVANCES IN PHYSICS, 1970, 19 (80) :525-&
[3]  
Belinskii V. A., 1972, Soviet Physics - JETP, V35, P838
[4]   Action for twisted self-duality [J].
Bunster, Claudio ;
Henneaux, Marc .
PHYSICAL REVIEW D, 2011, 83 (12)
[5]  
Carroll Lewis, 1871, LOOKING GLASS WHAT A
[6]  
Courant R., 1962, Methods of Mathematical Physics, VII, P91
[7]   Cosmological billiards [J].
Damour, T ;
Henneaux, M ;
Nicolai, H .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (09) :R145-R200
[8]   Hamiltonian electric/magnetic duality and Lorentz invariance [J].
Deser, S ;
Sarioglu, O .
PHYSICS LETTERS B, 1998, 423 (3-4) :369-372
[9]   CONDITIONS FOR A QUANTUM FIELD THEORY TO BE RELATIVISTIC [J].
DIRAC, PAM .
REVIEWS OF MODERN PHYSICS, 1962, 34 (04) :592-&
[10]   ELECTRIC-MAGNETIC DUALITY ROTATIONS IN NONLINEAR ELECTRODYNAMICS [J].
GIBBONS, GW ;
RASHEED, DA .
NUCLEAR PHYSICS B, 1995, 454 (1-2) :185-206