Neural correlates of STN DBS-induced cognitive variability in Parkinson disease

被引:63
作者
Campbell, M. C. [1 ]
Karimi, M. [2 ]
Weaver, P. M. [1 ]
Wu, J. [1 ]
Perantie, D. C. [1 ]
Golchin, N. A. [2 ]
Tabbal, S. D. [2 ]
Perlmutter, J. S. [2 ,3 ,4 ,5 ]
Hershey, T. [1 ,2 ,3 ]
机构
[1] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Program Phys Therapy, St Louis, MO 63110 USA
关键词
Parkinson disease; Deep brain stimulation; Working memory; Response inhibition; PET;
D O I
10.1016/j.neuropsychologia.2008.07.012
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Background: Although deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson disease (PD) improves motor function, it has variable effects on working memory (WM) and response inhibition (R1) performance. The purpose of this study was to determine the neural correlates of STN DBS-induced variability in cognitive performance. Methods: We measured bilateral STN DBS-induced blood flow changes (PET and [O-15]-water on one day) in the supplementary motor area (SMA), dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), and right inferior frontal cortex (rlFC) as well as in exploratory ROIs defined by published meta-analyses. STN DBS-induced WM and RI changes (Spatial Delayed Response and Go-No-Go on the next day) were measured in 24 PD participants. On both days, participants withheld PD medications overnight and conditions (OFF vs. ON) were administered in a counterbalanced, double-blind manner. Results: As predicted, STN DBS-induced DLPFC blood flow change correlated with change in WM, but not RI performance. Furthermore, ACC blood flow change correlated with change in RI but not WM performance. For both relationships, increased blood flow related to decreased cognitive performance in response to STN DBS. Of the exploratory regions, only blood flow changes in DLPFC and ACC were correlated with performance. Conclusions: These results demonstrate that variability in the effects of STN DBS on cognitive performance relates to STN DBS-induced cortical blood flow changes in DLPFC and ACC. This relationship highlights the need to further understand the factors that mediate the variability in neural and cognitive response to STN DBS. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3162 / 3169
页数:8
相关论文
共 78 条
[1]  
ALEXANDER GE, 1990, PROG BRAIN RES, V85, P119
[2]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[3]   Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI [J].
Aron, Adam R. ;
Behrens, Tim E. ;
Smith, Steve ;
Frank, Michael J. ;
Poldrack, Russell A. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (14) :3743-3752
[4]   Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus [J].
Aron, AR ;
Poldrack, RA .
JOURNAL OF NEUROSCIENCE, 2006, 26 (09) :2424-2433
[5]   Inhibition and the right inferior frontal cortex [J].
Aron, AR ;
Robbins, TW ;
Poldrack, RA .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (04) :170-177
[6]   Anterior cingulate cortex and response conflict: Effects of response modality and processing domain [J].
Barch, DM ;
Braver, TS ;
Akbudak, E ;
Conturo, T ;
Ollinger, J ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :837-848
[7]  
BAUNEZ C, 1995, J NEUROSCI, V15, P6531
[8]   Bilateral lesions of the subthalamic nucleus induce multiple deficits in an attentional task in rats [J].
Baunez, C ;
Robbins, TW .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1997, 9 (10) :2086-2099
[9]   Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection [J].
Baunez, C ;
Humby, T ;
Eagle, DM ;
Ryan, LJ ;
Dunnett, SB ;
Robbins, TW .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 13 (08) :1609-1616
[10]   Conflict monitoring versus selection-for-action in anterior cingulate cortex [J].
Botvinick, M ;
Nystrom, LE ;
Fissell, K ;
Carter, CS ;
Cohen, JD .
NATURE, 1999, 402 (6758) :179-181