Creep tests on Ni-based single-crystal superalloy sheet specimens typically show greater creep strain rates and/or reduced strain or time to creep rupture for thinner specimens than predicted by current theories, which predict a size-independent creep strain rate and creep rupture strain. This size-dependent creep response is termed the thickness debit effect. To investigate the mechanism of the thickness debit effect, isothermal, constant nominal stress creep tests were performed on uncoated PWA1484 Ni-based single-crystal superalloy sheet specimens of thicknesses 3.18 and 0.51 mm under two test conditions: 760 degrees C/758 MPa and 982 degrees C/248 MPa. The specimens contained initial microvoids formed during the solidification and homogenization processes. The dependence of the creep response on specimen thickness differed under the two test conditions: at 760 degrees C/758 MPa there was a reduction in the creep strain and the time to rupture with decreasing section thickness, whereas at 982 degrees C/248 MPa a decreased thickness resulted in an increased creep rate even at low strain levels and a decreased time to rupture but with no systematic dependence of the creep strain to rupture on specimen thickness. For the specimens tested at 760 degrees C/758 MPa microscopic analyses revealed that the thick specimens exhibited a mixed failure mode of void growth and cleavage-like fracture while the predominant failure mode for the thin specimens was cleavage-like fracture. The creep specimens tested at 982 degrees C/248 MPa in air showed the development of surface oxides and a near-surface precipitate-free zone. Finite-element analysis revealed that the presence of the alumina layer at the free surface imposes a constraint that locally increases the stress triaxiality and changes the value of the Lode parameter (a measure of the third stress invariant). The surface cracks formed in the oxide scale were arrested by further oxidation; for a thickness of 3.18 mm the failure mode was void nucleation, growth and coalescence, whereas for a thickness of 0.51 mm there was a mixed mode of ductile and cleavage-like fracture. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
机构:
Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
Shenyang Univ Chem Technol, Sch Energy & Power Engn, Shenyang 110142, Peoples R ChinaShenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
Su, Yong
Tian, Sugui
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R ChinaShenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
Tian, Sugui
Yu, Huichen
论文数: 0引用数: 0
h-index: 0
机构:
AVIC Beijing Inst Aeronaut Mat, Beijing Key Lab Aeronaut Mat Testing & Evaluat, Sci & Technol Adv High Temp Struct Mat Lab, Beijing 100095, Peoples R ChinaShenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
Yu, Huichen
Yu, Lili
论文数: 0引用数: 0
h-index: 0
机构:
Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R ChinaShenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Peoples R China
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
Shenyang Ligong Univ, Sch Mat Sci & Engn, Shenyang 110168, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
Jia Yuxian
Jin Tao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
Jin Tao
Liu Jinlai
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
Liu Jinlai
Sun Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
Sun Xiaofeng
Hu Zhuangqi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R ChinaChinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China