Notes About the Caratheodory Number

被引:14
作者
Barany, Imre [2 ,3 ]
Karasev, Roman [1 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dept Math, Dolgoprudnyi 141700, Russia
[2] Hungarian Acad Sci, Renyi Inst Math, H-1364 Budapest, Hungary
[3] UCL, Dept Math, London WC1E 6BT, England
[4] Yaroslavl State Univ, Lab Discrete & Computat Geometry, Yaroslavl 150000, Russia
基金
俄罗斯基础研究基金会;
关键词
Caratheodory's theorem; Helly's theorem; Tverberg's theorem; COLORFUL SIMPLICIAL DEPTH; THEOREM; FAMILIES; FIELDS; SETS;
D O I
10.1007/s00454-012-9439-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we give sufficient conditions for a compactum in a"e (n) to have Carath,odory number less than n+1, generalizing an old result of Fenchel. Then we prove the corresponding versions of the colorful Carath,odory theorem and give a Tverberg-type theorem for families of convex compacta.
引用
收藏
页码:783 / 792
页数:10
相关论文
共 23 条
[1]   Very Colorful Theorems [J].
Arocha, Jorge L. ;
Imre Barany ;
Bracho, Javier ;
Fabila, Ruy ;
Montejano, Luis .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (02) :142-154
[2]   A GENERALIZATION OF CARATHEODORYS THEOREM [J].
BARANY, I .
DISCRETE MATHEMATICS, 1982, 40 (2-3) :141-152
[3]   Colourful linear programming and its relatives [J].
Barany, I ;
Onn, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) :550-567
[4]   Quadratically many colorful simplices [J].
Barany, Imre ;
Matousek, Jiri .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :191-198
[5]  
Barvinok A, 2002, Graduate Studies in Mathematics, V54
[6]  
Brickman L., 1961, Proc. Amer. Math. Soc., V12, P61
[7]  
Caratheodory C., 1911, Rend. Circ. Mat. Palermo (1884-1940), V32, P193, DOI [10.1007/BF03014795, DOI 10.1007/BF03014795]
[8]   Colourful simplicial depth [J].
Deza, A ;
Huang, S ;
Stephen, T ;
Terlaky, T .
DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (04) :597-615
[9]  
Dol'nikov V. L., 1987, RUSS AC SC SB MATH+, V79, P777