Golden differential geometry

被引:155
作者
Crasmareanu, Mircea [2 ]
Hretcanu, Cristina-Elena [1 ]
机构
[1] Stefan Mare Univ, Suceava, Romania
[2] Cuza Univ, Iasi, Romania
关键词
D O I
10.1016/j.chaos.2008.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A research on the properties of the Golden structure (i.e. a polynomial structure with the structure polynomial Q(X) = X-2 - X - 1) is carried out in this article. The Golden proportion plays a central role in this paper. The geometry of the Golden structure on a manifold is investigated by using a corresponding almost product structure. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1229 / 1238
页数:10
相关论文
共 29 条
[1]  
BEJANCU A, 2006, MATH ITS APPL, V580, P47201
[2]  
Cruceanu V., 2006, AN STIINT U AL I CUZ, V52, P5
[3]  
CRUCEANU V, 1969, AN ST U AL I CUZA IA, V15, P159
[4]  
CUSHMAN RH, 1997, GLOBAL ASPECTS CLASS, P47201
[5]  
DEMETROPOULOUPS.D, 1988, TENSOR, V47, P235
[6]   The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2003, 18 (02) :401-420
[7]   Kleinian groups in E(∞) and their connection to particle physics and cosmology [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2003, 16 (04) :637-649
[8]   The Concepts of E Infinity:: An elementary introduction to the Cantorian-fractal theory of quantum physics [J].
El Naschle, MS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (02) :495-511
[9]  
El Nashie M. S., 1992, Chaos Solitons-Fractals, V1, P485
[10]  
FISCHLER RH, 2000, SHAPE GREAT PYRAMID, P47201