Homological properties of 0-Hecke modules for dual immaculate quasisymmetric functions

被引:5
作者
Choi, Seung-Il [1 ]
Kim, Young-Hun [1 ]
Nam, Sun-Young [2 ]
Oh, Young-Tak [2 ]
机构
[1] Seoul Natl Univ, Ctr Quantum Struct Modules & Spaces, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Sogang Univ, Dept Math, 35 Baekbeom Ro, Seoul 04107, South Korea
基金
新加坡国家研究基金会;
关键词
REPRESENTATION-THEORY; HECKE ALGEBRAS; SCHUR; BASES;
D O I
10.1017/fms.2022.81
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n be a nonnegative integer. For each composition alpha of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable H-n(0) module nu(alpha) with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study nu(alpha)s from the homological viewpoint. To be precise, we construct a minimal projective presentation of nu(alpha) and a minimal injective presentation of nu(alpha) as well. Using them, we compute Ext(Hn(0))(1) (nu(alpha), F-beta) and Ext(Hn(0))(1) (F-beta, nu(alpha)), where F-beta is the simple H-n(0)-module attached to a composition beta of n. We also compute Ext(Hn(0))(i) (nu(alpha), nu(beta)) when i = 0, 1 and beta <=(l) alpha, where <=(l) represents the lexicographic order on compositions.
引用
收藏
页数:37
相关论文
共 28 条
[1]  
[Anonymous], 1995, Cambridge Studies in Advanced Mathematics
[2]  
Bardwell J., 2020, EUROPEAN J COMBIN, DOI DOI 10.1016/J.EJC.2021.103494
[3]  
Benson D. J, 1991, Cambridge Studies in Advanced Mathematics, V30
[4]   Multiplicative structures of the immaculate basis of non-commutative symmetric functions [J].
Berg, Chris ;
Bergeron, Nantel ;
Saliola, Franco ;
Serrano, Luis ;
Zabrocki, Mike .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 152 :10-44
[5]  
Berg C, 2015, P AM MATH SOC, V143, P991
[6]   A Lift of the Schur and Hall-Littlewood Bases to Non-commutative Symmetric Functions [J].
Berg, Chris ;
Bergeron, Nantel ;
Saliola, Franco ;
Serrano, Luis ;
Zabrocki, Mike .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03) :525-565
[7]   The Pieri Rule for Dual Immaculate Quasi-Symmetric Functions [J].
Bergeron, Nantel ;
Sanchez-Ortega, Juana ;
Zabrocki, Mike .
ANNALS OF COMBINATORICS, 2016, 20 (02) :283-300
[8]  
Bjorner A., 2005, Combinatorics of Coxeter Groups, V231, DOI 10.1007/3-540-27596-7
[9]  
Cabanes M., 1989, J FAC SCI U TOKYO IA, V36, P347, DOI [10.15083/00039425, DOI 10.15083/00039425]
[10]   The expansion of immaculate functions in the ribbon basis [J].
Campbell, John M. .
DISCRETE MATHEMATICS, 2017, 340 (07) :1716-1726