Siloxene-reduced graphene oxide composite hydrogel for supercapacitors

被引:87
作者
Meng, Qin [1 ]
Du, Cuicui [1 ]
Xu, Zhenyang [1 ]
Nie, Jianhang [1 ]
Hong, Min [1 ]
Zhang, Xiaohua [1 ]
Chen, Jinhua [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Prov Hunan Key Lab Cost Effect Utilizat Fossil Fu, Changsha 410082, Peoples R China
关键词
Siloxene; Graphene; Oxygen-containing functional groups; 3D architecture; Supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; ELECTRODE MATERIAL; FUNCTIONALIZED GRAPHENE; ENERGY; NITROGEN; GRAPHENE/POLYANILINE; PHENYLENEDIAMINE; NANOCOMPOSITE; POLYANILINE; NANOSHEETS;
D O I
10.1016/j.cej.2020.124684
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The electrochemical properties of graphene-based supercapacitor electrode materials are closely related to their architecture and chemical nature. Herein, the siloxene-reduced graphene oxide composite hydrogel (SGH) with modified three-dimensional (3D) hierarchical architecture and increased oxygen-containing functional groups are developed via intercalating small amount of layered siloxene between the reduced graphene oxide sheets by a one-step hydrothermal process. Siloxene serves as the "spacers" to form a three-dimensional structure with graphene, resulting in increased specific surface area. More importantly, siloxene is used to modify the surface chemical nature of graphene sheets by introducing additional oxygen-containing functional groups. The abundant oxygen-containing functional groups on SGH contribute to the pseudocapacitance and improve the wettability. Consequently, the proposed SGH exhibits a high specific capacitance of 520 F g(-1) at 1 A g(-1) in a three-electrode system in 1 M H2SO4 electrolyte, which can be maintained for 76.9% even as the discharging current density increases up to 100 A g(-1). Moreover, excellent stability is achieved for SGH with approximately 96.3% retention of the initial specific capacitance value after 15,000 cycles at a high current density of 50 A g(-1). Furthermore, the assembled symmetrical supercapacitor of SGH//SGH delivers a high energy density of 24.5 Wh kg(-1) at the power density of 399.6 W kg(-1). These imply that the siloxene-reduced graphene oxide composite hydrogel may be a promising electrode material for high-performance supercapacitors.
引用
收藏
页数:10
相关论文
共 62 条
[1]   Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes [J].
Ai, Wei ;
Zhou, Weiwei ;
Du, Zhuzhu ;
Du, Yaping ;
Zhang, Hua ;
Jia, Xingtao ;
Xie, Linghai ;
Yi, Mingdong ;
Yu, Ting ;
Huang, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (44) :23439-23446
[2]   Mass production of highly-porous graphene for high-performance supercapacitors [J].
Amiri, Ahmad ;
Shanbedi, Mehdi ;
Ahmadi, Goodarz ;
Eshghi, Hossein ;
Kazi, S. N. ;
Chew, B. T. ;
Savari, Maryam ;
Zubir, Mohd Nashrul Mohd .
SCIENTIFIC REPORTS, 2016, 6
[3]   Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors [J].
An, Ning ;
An, Yufeng ;
Hu, Zhongai ;
Guo, Bingshu ;
Yang, Yuying ;
Lei, Ziqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (44) :22239-22246
[4]   Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance [J].
Bai, Yaocai ;
Rakhi, R. B. ;
Chen, Wei ;
Alshareef, H. N. .
JOURNAL OF POWER SOURCES, 2013, 233 :313-319
[5]   One-step synthesis of highly reduced graphene hydrogels for high power supercapacitor applications [J].
Banda, Harish ;
Aradilla, David ;
Benayad, Anass ;
Chenavier, Yves ;
Daffos, Barbara ;
Dubois, Lionel ;
Duclairoir, Florence .
JOURNAL OF POWER SOURCES, 2017, 360 :538-547
[6]   Vertically Oriented Graphene Bridging Active-Layer/Current-Collector Interface for Ultrahigh Rate Supercapacitors [J].
Bo, Zheng ;
Zhu, Weiguang ;
Ma, Wei ;
Wen, Zhenhai ;
Shuai, Xiaorui ;
Chen, Junhong ;
Yan, Jianhua ;
Wang, Zhihua ;
Cen, Kefa ;
Feng, Xinliang .
ADVANCED MATERIALS, 2013, 25 (40) :5799-+
[7]   A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment [J].
Chabot, Victor ;
Higgins, Drew ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1564-1596
[8]   Systematic evaluation of factors influencing electrochemical and morphological characteristics of free-standing 3D graphene hydrogels as electrode material for supercapacitors [J].
Foroutan, Masoud ;
Naji, Leila .
ELECTROCHIMICA ACTA, 2019, 301 :421-435
[9]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[10]   Role of reduced graphene oxide in improving interfacial charge transfer of hybridized rGO/silica/zirconia for enhanced Bisphenol A photodegradation [J].
Hassan, N. S. ;
Jalil, A. A. ;
Khusnun, N. F. ;
Ali, M. W. ;
Haron, S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 789 :221-230