Uncertainty Quantification in Discrete Fracture Network Models: Stochastic Geometry

被引:27
作者
Berrone, Stefano [1 ]
Canuto, Claudio [1 ]
Pieraccini, Sandra [2 ]
Scialo, Stefano [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Turin, Italy
[2] Politecn Torino, Dipartimento Ingn Meccan & Aerospaziale, Turin, Italy
关键词
uncertainty quantification; stochastic geometry; discrete fracture network; subsurface flow; multilevel Monte Carlo; VIRTUAL ELEMENT METHOD; TRANSIENT DARCY FLOW; HYBRID MORTAR METHOD; STEADY-STATE METHOD; SOLVING FLOW; POROUS-MEDIA; DIFFERENTIAL-EQUATIONS; OPTIMIZATION APPROACH; SIMULATIONS; TRANSPORT;
D O I
10.1002/2017WR021163
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We consider the problem of uncertainty quantification analysis of the output of underground flow simulations. We consider in particular fractured media described via the discrete fracture network model; within this framework, we address the relevant case of networks in which the geometry of the fractures is described by stochastic parameters. In this context, due to a possible lack of smoothness in the quantity of interest with respect to the stochastic parameters, well assessed techniques such as stochastic collocation may fail in providing reliable estimates of first-order moments of the quantity of interest. In this paper, we overcome this issue by applying the Multilevel Monte Carlo method, using as underlying solver an extremely robust method.
引用
收藏
页码:1338 / 1352
页数:15
相关论文
共 52 条
[41]   A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow [J].
Noetinger, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 283 :205-223
[42]   A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks [J].
Noetinger, B. ;
Jarrige, N. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) :23-38
[43]   A GENERALIZED MIXED HYBRID MORTAR METHOD FOR SOLVING FLOW IN STOCHASTIC DISCRETE FRACTURE NETWORKS [J].
Pichot, G. ;
Erhel, J. ;
de Dreuzy, J. -R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) :B86-B105
[44]   A mixed hybrid Mortar method for solving flow in discrete fracture networks [J].
Pichot, G. ;
Erhel, J. ;
de Dreuzy, J. R. .
APPLICABLE ANALYSIS, 2010, 89 (10) :1629-1643
[45]   A Mortar BDD Method for Solving Flow in Stochastic Discrete Fracture Networks [J].
Pichot, Geraldine ;
Poirriez, Baptiste ;
Erhel, Jocelyne ;
De Dreuzy, Jean-Raynald .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 :99-112
[46]   On a PDE-Constrained Optimization Approach for Flow Simulations in Fractured Media [J].
Pieraccini, Sandra ;
Scialo, Stefano .
ADVANCES IN DISCRETIZATION METHODS: DISCONTINUITIES, VIRTUAL ELEMENTS, FICTITIOUS DOMAIN METHODS, 2016, 12 :27-45
[47]   An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations [J].
Sandve, T. H. ;
Berre, I. ;
Nordbotten, J. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (09) :3784-3800
[48]   Dimensionally reduced flow models in fractured porous media: crossings and boundaries [J].
Schwenck, Nicolas ;
Flemisch, Bernd ;
Helmig, Rainer ;
Wohlmuth, Barbara I. .
COMPUTATIONAL GEOSCIENCES, 2015, 19 (06) :1219-1230
[49]   Stochastic analysis of transport in tubes with rough walls [J].
Tartakovsky, Daniel M. ;
Xiu, Dongbin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) :248-259
[50]   Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients [J].
Teckentrup, A. L. ;
Scheichl, R. ;
Giles, M. B. ;
Ullmann, E. .
NUMERISCHE MATHEMATIK, 2013, 125 (03) :569-600