Multiple neural spike train data analysis: state-of-the-art and future challenges

被引:572
|
作者
Brown, EN
Kass, RE
Mitra, PP
机构
[1] Harvard Univ, Sch Med, MIT, Div Hlth Sci & Technol, Boston, MA 02114 USA
[2] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15208 USA
[3] Ctr Neural Basis Cognit, Dept Stat, Pittsburgh, PA 15208 USA
[4] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
关键词
D O I
10.1038/nn1228
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multiple electrodes are now a standard tool in neuroscience research that make it possible to study the simultaneous activity of several neurons in a given brain region or across different regions. The data from multi-electrode studies present important analysis challenges that must be resolved for optimal use of these neurophysiological measurements to answer questions about how the brain works. Here we review statistical methods for the analysis of multiple neural spike-train data and discuss future challenges for methodology research.
引用
收藏
页码:456 / 461
页数:6
相关论文
共 50 条
  • [1] Multiple neural spike train data analysis: state-of-the-art and future challenges
    Emery N Brown
    Robert E Kass
    Partha P Mitra
    Nature Neuroscience, 2004, 7 : 456 - 461
  • [2] An integrative analysis platform for multiple neural spike train data
    Huang, Yu
    Li, Xiangning
    Li, Yanling
    Xu, Qingwei
    Lu, Qiang
    Liu, Qian
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 172 (02) : 303 - 311
  • [3] Computational Techniques and Tools for Omics Data Analysis: State-of-the-Art, Challenges, and Future Directions
    Parampreet Kaur
    Ashima Singh
    Inderveer Chana
    Archives of Computational Methods in Engineering, 2021, 28 : 4595 - 4631
  • [4] Computational Techniques and Tools for Omics Data Analysis: State-of-the-Art, Challenges, and Future Directions
    Kaur, Parampreet
    Singh, Ashima
    Chana, Inderveer
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (07) : 4595 - 4631
  • [5] Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges
    von Landesberger, T.
    Kuijper, A.
    Schreck, T.
    Kohlhammer, J.
    van Wijk, J. J.
    Fekete, J. -D.
    Fellner, D. W.
    COMPUTER GRAPHICS FORUM, 2011, 30 (06) : 1719 - 1749
  • [6] State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data
    Shimazaki, Hideaki
    Amari, Shun-ichi
    Brown, Emery N.
    Gruen, Sonja
    PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (03)
  • [7] Cardiac optical mapping - State-of-the-art and future challenges
    O'Shea, Christopher
    Kabir, S. Nashitha
    Holmes, Andrew P.
    Lei, Ming
    Fabritz, Larissa
    Rajpoot, Kashif
    Pavlovic, Davor
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2020, 126
  • [8] State-of-the-Art and Future Research Challenges in UAV Swarms
    Javed, Sadaf
    Hassan, Ali
    Ahmad, Rizwan
    Ahmed, Waqas
    Ahmed, Rehan
    Saadat, Ahsan
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19023 - 19045
  • [9] State-of-the-art and future challenges in the integration of biobank catalogues
    Müller, Heimo
    Reihs, Robert
    Zatloukal, Kurt
    Jeanquartier, Fleur
    Merino-Martinez, Roxana
    van Enckevort, David
    Swertz, Morris A.
    Holzinger, Andreas
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, 8700 : 261 - 273
  • [10] Social manufacturing: A survey of the state-of-the-art and future challenges
    Jiang, Pingyu
    Leng, Jiewu
    Ding, Kai
    PROCEEDINGS 2016 IEEE INTERNATIONAL CONFERENCE ON SERVICE OPERATIONS AND LOGISTICS, AND INFORMATICS (SOLI), 2016, : 12 - 17