Transformed Low-rank Model for Line Pattern Noise Removal

被引:135
作者
Chang, Yi [1 ]
Yan, Luxin [1 ]
Zhong, Sheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan, Hubei, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2017年
基金
中国国家自然科学基金;
关键词
IMAGE; RESTORATION; ALGORITHM;
D O I
10.1109/ICCV.2017.191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of line pattern noise removal from a single image, such as rain streak, hyperspectral stripe and so on. Most of the previous methods model the line pattern noise in original image domain, which fail to explicitly exploit the directional characteristic, thus resulting in a redundant subspace with poor representation ability for those line pattern noise. To achieve a compact subspace for the line pattern structure, in this work, we incorporate a transformation into the image decomposition model so that maps the input image to a domain where the line pattern appearance has an extremely distinct low-rank structure, which naturally allows us to enforce a low-rank prior to extract the line pattern streak/stripe from the noisy image. Moreover, the random noise is usually mixed up with the line pattern noise, which makes the challenging problem much more difficult. While previous methods resort to the spectral or temporal correlation of the multi-images, we give a detailed analysis between the noisy and clean image in both local gradient and nonlocal domain, and propose a compositional directional total variational and low-rank prior for the image layer, thus to simultaneously accommodate both types of noise. The proposed method has been evaluated on two different tasks, including remote sensing image mixed random-stripe noise removal and rain streak removal, all of which obtain very impressive performances.
引用
收藏
页码:1735 / 1743
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 2011, P ADV NEUR INF PROC
[2]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[3]  
Burger HC, 2012, PROC CVPR IEEE, P2392, DOI 10.1109/CVPR.2012.6247952
[4]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[5]   Low-rank Matrix Factorization under General Mixture Noise Distributions [J].
Cao, Xiangyong ;
Chen, Yang ;
Zhao, Qian ;
Meng, Deyu ;
Wang, Yao ;
Wang, Dong ;
Xu, Zongben .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1493-1501
[6]  
Chang Y., 2017, CVPR, P4260
[7]   Remote Sensing Image Stripe Noise Removal: From Image Decomposition Perspective [J].
Chang, Yi ;
Yan, Luxin ;
Wu, Tao ;
Zhong, Sheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7018-7031
[8]   Anisotropic Spectral-Spatial Total Variation Model for Multispectral Remote Sensing Image Destriping [J].
Chang, Yi ;
Yan, Luxin ;
Fang, Houzhang ;
Luo, Chunan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (06) :1852-1866
[9]   A Generalized Low-Rank Appearance Model for Spatio-Temporally Correlated Rain Streaks [J].
Chen, Yi-Lei ;
Hsu, Chiou-Ting .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1968-1975
[10]   Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising [J].
Dong, Weisheng ;
Li, Guangyu ;
Shi, Guangming ;
Li, Xin ;
Ma, Yi .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :442-449