We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of zeros of the sum of maximal monotone operators, and we obtain strong convergence theorems in Hilbert spaces. We also apply our results to the variational inequality and convex minimization problems. Our results extend and improve the recent result of Takahashi et al. (2012).
机构:
Chongqing Normal Univ, Coll Math & Comp Sci, Chongqing 400047, Peoples R ChinaChongqing Normal Univ, Coll Math & Comp Sci, Chongqing 400047, Peoples R China
Peng, Jian-Wen
Yao, Jen-Chih
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sun Yat Sen Univ Kaohsiung, Dept Appl Math, Kaohsiung 804, TaiwanChongqing Normal Univ, Coll Math & Comp Sci, Chongqing 400047, Peoples R China
机构:
Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing, Peoples R ChinaSichuan Univ, Coll Math, Chengdu 610065, Peoples R China
Tang, Yan
Zhang, Shiqing
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Coll Math, Chengdu 610065, Peoples R ChinaSichuan Univ, Coll Math, Chengdu 610065, Peoples R China
Zhang, Shiqing
Cho, Yeol Je
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, Jinju, South Korea
China Med Univ, Ctr Gen Educ, Taichung, TaiwanSichuan Univ, Coll Math, Chengdu 610065, Peoples R China