Iterative Methods for Equilibrium Problems and Monotone Inclusion Problems in Hilbert Spaces

被引:2
|
作者
Wu, Huan-chun [1 ]
Cheng, Cao-zong [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
STRONG-CONVERGENCE THEOREMS; HALPERNS TYPE; OPERATORS;
D O I
10.1155/2013/280909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set of zeros of the sum of maximal monotone operators, and we obtain strong convergence theorems in Hilbert spaces. We also apply our results to the variational inequality and convex minimization problems. Our results extend and improve the recent result of Takahashi et al. (2012).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Iterative Methods for Fixed Point Problems in Hilbert Spaces Preface
    Cegielski, Andrzej
    ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : IX - +
  • [32] Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces
    Takahashi, Satoru
    Takahashi, Wataru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 506 - 515
  • [33] Iterative Methods for Fixed Point Problems in Hilbert Spaces Introduction
    Cegielski, Andrzej
    ITERATIVE METHODS FOR FIXED POINT PROBLEMS IN HILBERT SPACES, 2012, 2057 : 1 - 38
  • [34] Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Takahashi, Wataru
    Xu, Hong-Kun
    Yao, Jen-Chin
    SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (02) : 205 - 221
  • [35] Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces
    Wataru Takahashi
    Hong-Kun Xu
    Jen-Chin Yao
    Set-Valued and Variational Analysis, 2015, 23 : 205 - 221
  • [36] A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces
    Kim, Jong Kyu
    Lim, Won Hee
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [37] Regularization iterative method of bilevel form for equilibrium problems in Hilbert spaces
    Dang Van Hieu
    Le Dung Muu
    Pham Kim Quy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6143 - 6164
  • [38] A new iterative algorithm of pseudomonotone mappings for equilibrium problems in Hilbert spaces
    Jong Kyu Kim
    Won Hee Lim
    Journal of Inequalities and Applications, 2013
  • [39] Yosida Approximation Iterative Methods for Split Monotone Variational Inclusion Problems
    Dilshad, Mohammad
    Aljohani, Abdulrahman F.
    Akram, Mohammad
    Khidir, Ahmed A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [40] Modified Combined Relaxation Method for General Monotone Equilibrium Problems in Hilbert Spaces
    L. C. Zeng
    J. C. Yao
    Journal of Optimization Theory and Applications, 2006, 131 : 469 - 483