Nearly Approximate Transitivity (AT) for Circulant Matrices

被引:1
|
作者
Handelman, David [1 ]
机构
[1] Univ Ottawa, Math Dept, Ottawa, ON K1N 6N5, Canada
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2019年 / 71卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
approximately transitive; ergodic transformation; circulant matrix; hemicirculant matrix; dimension space; matrix-valued random walk;
D O I
10.4153/CJM-2017-041-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By previous work of Giordano and the author, ergodic actions of Z (and other discrete groups) are completely classified measure-theoretically by their dimension space, a construction analogous to the dimension group used in C*-algebras and topological dynamics. Here we investigate how far from approximately transitive (AT) actions can be that derive from circulant (and related) matrices. It turns out not very: although non-AT actions can arise from this method of construction, under very modest additional conditions, approximate transitivity arises. KIn addition, if we drop the positivity requirement in the isomorphism of dimension spaces, then all these ergodic actions satisfy an analogue of AT. Many examples are provided.
引用
收藏
页码:381 / 415
页数:35
相关论文
共 50 条
  • [1] On the logarithms of circulant matrices
    Lu, Chengbo
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (03) : 402 - 412
  • [2] Joins of circulant matrices
    Doan, Jacqueline
    Minac, Jan
    Muller, Lyle
    Nguyen, Tung T.
    Pasini, Federico W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 650 : 190 - 209
  • [3] Double circulant matrices
    Fan, Yun
    Liu, Hualu
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10) : 2119 - 2137
  • [4] Block matrices and Guo's index for block circulant matrices with circulant blocks
    Andrade, Enide
    Manzaneda, Cristina
    Nina, Hans
    Robbiano, Maria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 556 : 301 - 322
  • [5] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Marko Huhtanen
    Allan Perämäki
    Journal of Fourier Analysis and Applications, 2015, 21 : 1018 - 1033
  • [6] Factoring Matrices into the Product of Circulant and Diagonal Matrices
    Huhtanen, Marko
    Peramaki, Allan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (05) : 1018 - 1033
  • [7] THE CONSTRUCTION OF CIRCULANT MATRICES RELATED TO MDS MATRICES
    Malakhov, S. S.
    Rozhkov, M., I
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2022, (56): : 17 - 27
  • [8] On the eigenvectors of generalized circulant matrices
    Andrade, Enide
    Carrasco-Olivera, Dante
    Manzaneda, Cristina
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (16) : 2639 - 2652
  • [9] On circulant complex Hadamard matrices
    Arasu, KT
    De Launey, W
    Ma, SL
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 123 - 142
  • [10] Fourier and Circulant Matrices are Not Rigid
    Dvir, Zeev
    Liu, Allen
    THEORY OF COMPUTING, 2020, 16