Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons

被引:34
作者
Milojkovic, BA
Wuskell, JP
Loew, LM
Antic, SD
机构
[1] UConn Hlth Ctr, Dept Neurosci, Farmington, CT 06030 USA
[2] Erasmus MC, Dept Neurosci, NL-3015 GE Rotterdam, Netherlands
[3] UConn Hlth Ctr, Dept Cell Biol, Farmington, CT 06030 USA
关键词
prefrontal cortex; pyramidal neurons; basal dendrites; synaptic integration; dendritic; spikes; potentials; UP states;
D O I
10.1007/s00232-005-0827-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not Support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed"spikelet". Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.
引用
收藏
页码:155 / 169
页数:15
相关论文
共 68 条
[1]   Functional profile of the giant metacerebral neuron of Helix aspersa:: temporal and spatial dynamics of electrical activity in situ [J].
Antic, S ;
Wuskell, JP ;
Loew, L ;
Zecevic, D .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 527 (01) :55-69
[2]  
ANTIC S, 1995, J NEUROSCI, V15, P1392
[3]   Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons [J].
Antic, S ;
Major, G ;
Zecevic, D .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (03) :1615-1621
[4]   Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons [J].
Antic, SD .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 550 (01) :35-50
[5]  
ANTIC SD, 2003, SOC NEUR ABSTR
[6]   A model for intradendritic computation of binocular disparity [J].
Archie, KA ;
Mel, BW .
NATURE NEUROSCIENCE, 2000, 3 (01) :54-63
[7]  
Ariav G, 2003, J NEUROSCI, V23, P7750
[8]   Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat [J].
Bekkers, JM .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 525 (03) :611-620
[9]   Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells [J].
Chen, WR ;
Midtgaard, J ;
Shepherd, GM .
SCIENCE, 1997, 278 (5337) :463-467
[10]   Transmitter timecourse in the synaptic cleft: Its role in central synaptic function [J].
Clements, JD .
TRENDS IN NEUROSCIENCES, 1996, 19 (05) :163-171