A Short Proof of Commutator Estimates

被引:15
作者
D'Ancona, Piero [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
关键词
Commutator estimates; Kato-Ponce estimates; Littlewwod square function; Muckenhoupt weights;
D O I
10.1007/s00041-018-9612-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this note is to give, at least for a restricted range of indices, a short proof of homogeneous commutator estimates for fractional derivatives of a product, using classical tools. Both L-p and weighted L-p estimates can be proved by the same argument. When the space dimension is 1, we obtain some new estimates in the unexplored range 1/3 < r <= 1/2.
引用
收藏
页码:1134 / 1146
页数:13
相关论文
共 24 条
[1]   WEIGHTED NORM INEQUALITIES RELATING G-STAR-LAMBDA AND AREA FUNCTIONS [J].
AGUILERA, N ;
SEGOVIA, C .
STUDIA MATHEMATICA, 1977, 61 (03) :293-303
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]  
[Anonymous], ARXIV160908547
[4]  
Aronszajn N., 1961, ANN I FOURIER GRENOB, V11, P385
[5]   Meyers inequality and strong stability for stable-like operators [J].
Bass, Richard F. ;
Ren, Hua .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (01) :28-48
[6]  
Bourgain J, 2014, DIFFER INTEGRAL EQU, V27, P1037
[7]  
Bui HQ, 2017, CONTEMP MATH, V693, P109, DOI 10.1090/conm/693/13935
[8]  
COIFMAN R. R., 1986, ANN MATH STUD, V112, P3
[9]  
Cruz-Uribe D, 2016, DIFFER INTEGRAL EQU, V29, P801
[10]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+