Probabilistic G-contractions

被引:19
作者
Kamran, Tayyab [1 ]
Samreen, Maria [2 ]
Shahzad, Naseer [3 ]
机构
[1] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[2] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Islamabad, Pakistan
[3] King Abdulaziz Univ, Dept Math, Jeddah 21413, Saudi Arabia
关键词
fixed point; Menger PM-space; directed graph; Picard operator; FIXED-POINT THEOREMS; PARTIALLY ORDERED SETS; METRIC-SPACES;
D O I
10.1186/1687-1812-2013-223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of probabilistic G-contraction and establish some fixed point theorems in such settings. Our results generalize/extend some recent results of Jachymski and Sehgal and Bharucha-Reid. Consequently, we obtain fixed point results for -chainable PM-spaces and for cyclic operators. MSC: 47H10, 54H25.
引用
收藏
页数:14
相关论文
共 21 条
[1]   Generalized contractions in partially ordered metric spaces [J].
Agarwal, Ravi P. ;
El-Gebeily, M. A. ;
O'Regan, Donal .
APPLICABLE ANALYSIS, 2008, 87 (01) :109-116
[2]   Some fixed point results on a metric space with a graph [J].
Aleomraninejad, S. M. A. ;
Rezapour, Sh. ;
Shahzad, N. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) :659-663
[3]  
[Anonymous], 2011, Probabilistic Metric Spaces
[4]   Fixed point theorems in partially ordered metric spaces and applications [J].
Bhaskar, T. Gnana ;
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) :1379-1393
[5]   Fixed point theorems for Reich type contractions on metric spaces with a graph [J].
Bojor, Florin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (09) :3895-3901
[6]  
Cho YJ, 1996, INT J MATH MATH SCI, V19, P243
[7]  
Edelstein M., 1962, J. London Math. Soc, V37, P74, DOI [10.1112/jlms/s1-37.1.74, DOI 10.1112/JLMS/S1-37.1.74]
[8]  
Edelstein M., 1961, Proc.Amer.Math.Soc., V12, P7
[9]   Fixed point theorems for multivalued mappings in probabilistic metric spaces [J].
Hadzic, O .
FUZZY SETS AND SYSTEMS, 1997, 88 (02) :219-226
[10]  
Hadzic O., 2001, Fixed Point Theory in Probabilistic Metric Spaces