An analytical velocity field of spiral tips in reaction-diffusion systems

被引:2
作者
Pan, De-Bei [1 ]
Li, Bing-Wei [2 ]
Pan, Jun-Ting [3 ]
Li, Qi-Hao [4 ,5 ]
Zhang, Hong [4 ,5 ]
机构
[1] Guangxi Med Univ, Dept Phys, Nanning 530021, Peoples R China
[2] Hangzhou Normal Univ, Dept Phys, Hangzhou 311121, Peoples R China
[3] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China
[4] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[5] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
spiral waves; pattern formation; reaction-diffusion system; TOPOLOGICAL DEFECTS; WAVES; BREAKUP; TRANSITION; DYNAMICS; MODEL; ORGANIZATION; TURBULENCE; FILAMENTS;
D O I
10.1088/1367-2630/abb914
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spiral waves are ubiquitous in diverse physical, chemical, and biological systems. The tip (phase singularity) of a spiral wave is considered to represent its organizing center. Here, we derive an analytical velocity field of spiral tips based on the variables of a general two-variable reaction-diffusion (RD) equation. From this velocity field, we can predict the velocities of spiral tips at timetas long as the values of the variables are given at that time. Numerical simulations with two-variable RD models are in quantitative agreement with the analytical results. Furthermore, we also demonstrate the velocity field of spiral tips in the Luo-Rudy model for cardiac excitation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A theory of pattern formation for reaction-diffusion systems on temporal networks
    Van Gorder, Robert A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2247):
  • [32] Bistability, wave pinning and localisation in natural reaction-diffusion systems?
    Champneys, Alan R.
    Al Saadi, Fahad
    Brena-Medina, Victor F.
    Grieneisen, Veronica A.
    Maree, Athanasius F. M.
    Verschueren, Nicolas
    Wuyts, Bert
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 416
  • [33] Delay-induced patterns in a reaction-diffusion system on complex networks
    Wang, Xinyu
    Song, Zhao
    Li, Zhaoqing
    Chang, Lili
    Wang, Zhen
    NEW JOURNAL OF PHYSICS, 2021, 23 (07):
  • [34] Spatiotemporal antiresonance in coupled reaction-diffusion systems
    Pal, Krishnendu
    Paul, Shibashis
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [35] Analysis of Reaction-Diffusion Systems with Anomalous Subdiffusion
    Haugh, Jason M.
    BIOPHYSICAL JOURNAL, 2009, 97 (02) : 435 - 442
  • [36] Entire solutions for some reaction-diffusion systems
    Lv, Guangying
    Luo, Dang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (04)
  • [37] Resilience in reaction-diffusion systems
    van Vuuren, JH
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (02) : 179 - 197
  • [38] Control of transversal instabilities in reaction-diffusion systems
    Totz, Sonja
    Loeber, Jakob
    Totz, Jan Frederik
    Engel, Harald
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [39] Shaping wave patterns in reaction-diffusion systems
    Loeber, Jakob
    Martens, Steffen
    Engel, Harald
    PHYSICAL REVIEW E, 2014, 90 (06)
  • [40] Pattern formation mechanisms in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2009, 53 (5-6) : 673 - 681