MODELING WATER CONTENT DISTRIBUTION IN THE POLYMER ELECTROLYTE MEMBRANE OF PEM FUEL CELL

被引:0
|
作者
Tavakoli, Bahareh Alsadat [1 ]
Roshandel, Ramin [1 ]
机构
[1] Sharif Univ Technol, Energy Engn Dept, Tehran, Iran
关键词
TRANSPORT MODEL; 2-PHASE FLOW; VALIDATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro osmotic drag and convection. The effect of current density variation distribution on the Water content (lambda) in membrane/electrode assembly (MEA) was determined. After that detailed distribution of oxygen concentration, water content in membrane, net water flux and different overpotentials were calculated. Simulation results show that the reduction of reactant concentration in flow channels has a significant effect on electrochemical reaction in the gas diffusion and catalyst layer. Different fluxes are compared to investigate the effect of operating condition on the water fluxes in membrane. The amount of different fluxes is a strong function of current density which is related to external load. The model prediction of water content curves are compared with one dimensional model predictions data reported in the validated open literature and good compatibility were observed. In addition, the model predicted fuel cell polarization curves compared well with experimental and numerical data.
引用
收藏
页码:851 / 858
页数:8
相关论文
共 50 条
  • [1] Modeling of ion and water transport in the polymer electrolyte membrane of PEM fuel cells
    Baschuk, J. J.
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5095 - 5103
  • [2] The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane
    Tavakoli, B.
    Roshandel, R.
    RENEWABLE ENERGY, 2011, 36 (12) : 3319 - 3331
  • [3] Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply
    Tsushima, S
    Teranishi, K
    Nishida, K
    Hirai, S
    MAGNETIC RESONANCE IMAGING, 2005, 23 (02) : 255 - 258
  • [4] Analysis of PEM (Polymer Electrolyte Membrane) fuel cell cathode two-dimensional modeling
    Abdollahzadeh, M.
    Pascoa, J. C.
    Ranjbar, A. A.
    Esmaili, Q.
    ENERGY, 2014, 68 : 478 - 494
  • [5] Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability
    Huang, Xinyu
    Solasi, Roham
    Zou, Yue
    Feshler, Matthew
    Reifsnider, Kenneth
    Condit, David
    Burlatsky, Sergei
    Madden, Thomas
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2006, 44 (16) : 2346 - 2357
  • [6] Modeling of water and temperature distribution in PEM fuel cell
    Ma, Li-Zhong
    Shen, Shuang-Lin
    Jia, Fei
    Liu, Hong-Tan
    Guo, Lie-Jin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (12): : 2051 - 2056
  • [7] Current distribution in polymer electrolyte membrane fuel cell with active water management
    Strickland, Daniel G.
    Litster, Shawn
    Santiago, Juan G.
    JOURNAL OF POWER SOURCES, 2007, 174 (01) : 272 - 281
  • [8] Water transport coefficient distribution through the membrane in a polymer electrolyte fuel cell
    Liu, Fuqiang
    Lu, Guoqiang
    Wang, Chao-Yang
    JOURNAL OF MEMBRANE SCIENCE, 2007, 287 (01) : 126 - 131
  • [9] Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions
    Antonio Salva, J.
    Iranzo, Alfredo
    Rosa, Felipe
    Tapia, Elvira
    ENERGY, 2016, 101 : 100 - 112
  • [10] Modeling polymer electrolyte membrane fuel cell performances
    Okada, T
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2001, 4 (04) : 209 - 220