Mappings of finite distortion: Gauge dimension of generalized quasicircles

被引:25
作者
Herron, DA [1 ]
Koskela, P
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Jyvaskyla, Dept Math & Stat, SF-40351 Jyvaskyla, Finland
关键词
D O I
10.1215/ijm/1258138102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the correct dimension gauge for measuring generalized quasicircles (the images of a circle under so-called mu-homeomorphisms). We establish a sharp modulus of continuity estimate for the inverse of a homeomorphism with finite exponentially integrable distortion. We exhibit several illustrative examples.
引用
收藏
页码:1243 / 1259
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1992, MEASURE THEORY FINE
[2]  
[Anonymous], 1971, LECT N DIMENSIONAL Q
[3]   AREA DISTORTION OF QUASI-CONFORMAL MAPPINGS [J].
ASTALA, K .
ACTA MATHEMATICA, 1994, 173 (01) :37-60
[4]   Mappings of BMO-bounded distortion [J].
Astala, K ;
Iwaniec, T ;
Koskela, P ;
Martin, G .
MATHEMATISCHE ANNALEN, 2000, 317 (04) :703-726
[5]  
ASTALA K., 1988, Rev. Mat. Iberoam., V4, P469
[6]  
Bishop CJ, 1999, ANN ACAD SCI FENN-M, V24, P397
[7]   SOLUTIONS OF THE BELTRAMI EQUATION WITH THE NORM OF MU TO INFINITY = 1 [J].
DAVID, G .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (01) :25-70
[8]  
Federer H., 1969, GRUNDLEHREN MATH WIS, V153
[9]  
GEHRING FW, 1973, J LOND MATH SOC, V6, P504
[10]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277