Sharp constants in V. A. Markov-Bernstein type inequalities of different metrics

被引:13
作者
Ganzburg, Michael I. [1 ]
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
关键词
V. A. Markov Bernstein inequality of different metrics; Algebraic polynomials; Trigonometric polynomials; Entire functions of exponential type; Entire functions of exponential semitype; NIKOLSKII INEQUALITY; ALGEBRAIC POLYNOMIALS; UNIFORM NORM; LP;
D O I
10.1016/j.jat.2016.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study relations between sharp constants in the V.A. Markov Bernstein inequalities of different L-r-metrics for algebraic polynomials on an interval and for entire functions on the real line or half-line. In a number of cases, we prove that the sharp constant in the inequality for entire functions of exponential type or semitype is the limit of sharp constants in the corresponding inequalities for algebraic polynomials of degree n as n -> infinity. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 105
页数:14
相关论文
共 28 条
[1]  
Akhiezer N. I., 1965, LECT THEORY APPROXIM
[2]  
[Anonymous], IZV AKAD NAUK SSSR M
[3]   Nikol'skii Inequality for Algebraic Polynomials on a Multidimensional Euclidean Sphere [J].
Arestov, V. V. ;
Deikalova, M. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 :S9-S23
[4]  
Arestov V, 2015, COMPUT METH FUNCT TH, V15, P689, DOI 10.1007/s40315-015-0134-y
[5]  
Bari N.K., 1954, Izv. Akad. Nauk SSSR Ser. Mat., V18, P159
[6]  
BERNSTEIN SN, 1946, DOKL AKAD NAUK SSSR, V52, P565
[7]  
Boas R. P., 1954, Entire Functions
[8]   On the Sharp Jackson-Nikol'skii Inequality for Algebraic Polynomials on a Multidimensional Euclidean Sphere [J].
Deikalova, M. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 266 :S129-S142
[9]  
DORFLER P, 1987, SIAM J MATH ANAL, V18, P490, DOI 10.1137/0518039
[10]  
Ganzburg M. I., 1991, UKR MATH J, V23, p[336, 299]