Heights and quadratic forms: Cassels' theorem and its generalizations

被引:10
作者
Fukshansky, Lenny [1 ]
机构
[1] Claremont Mckenna Coll, Dept Math, 850 Columbia Ave, Claremont, CA 91711 USA
来源
DIOPHANTINE METHODS, LATTICES, AND ARITHMETIC THEORY OF QUADRATIC FORMS | 2013年 / 587卷
关键词
Heights; quadratic forms; SMALL ZEROS; NUMBER; EQUATION; SOLVE;
D O I
10.1090/conm/587/11673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey paper, we discuss the classical Cassels' theorem on existence of small-height zeros of quadratic forms over Q and its many extensions, to different fields and rings, as well as to more general situations, such as existence of totally isotropic small-height subspaces. We also discuss related recent results on effective structural theorems for quadratic spaces, as well as Cassels'-type theorems for small-height zeros of quadratic forms with additional conditions. We conclude with a selection of open problems.
引用
收藏
页码:77 / +
页数:5
相关论文
共 50 条
[1]  
[Anonymous], 1970, DOKL AKAD NAUK SSSR+
[2]  
Birch BJ., 1958, P CAMBRIDGE PHILOS S, V54, P135
[3]   ON SIEGEL LEMMA [J].
BOMBIERI, E ;
VAALER, J .
INVENTIONES MATHEMATICAE, 1983, 73 (01) :11-32
[4]  
Bombieri E., 2006, HEIGHTS DIOPHANTINE, V4
[5]   On the representation of integers by quadratic forms [J].
Browning, T. D. ;
Dietmann, R. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :389-416
[6]   Least zero of a cubic form [J].
Browning, T. D. ;
Dietmann, R. ;
Elliott, P. D. T. A. .
MATHEMATISCHE ANNALEN, 2012, 352 (03) :745-778
[7]  
Cassels J.W.S., 1955, Mathematical Proceedings of the Cambridge Philosophical Society, V51, P262, DOI [10.1017/S0305004100030188, DOI 10.1017/S0305004100030188]
[8]  
Cassels JWS., 1968, Rational Quadratic Forms
[9]  
Chalk J. H. H., 1978, C R MATH REP ACAD SC, V1, P275
[10]   LINEARLY INDEPENDENT ZEROS OF QUADRATIC-FORMS OVER NUMBER-FIELDS [J].
CHALK, JHH .
MONATSHEFTE FUR MATHEMATIK, 1980, 90 (01) :13-25