Evaluating the Effects of K-means Clustering Approach on Medical Images

被引:0
|
作者
Moftah, Hossam M. [1 ]
Elmasry, Walaa H. [2 ]
El-Bendary, Nashwa [3 ]
Hassanien, Aboul Ella [2 ]
Nakamatsu, Kazumi [4 ]
机构
[1] Beni Suef Univ, Fac Comp & Informat, Bani Suwayf, Egypt
[2] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
[3] Arab Acad Sci Technol, Maritime Transport, Cairo, Egypt
[4] Univ Hyogo, Sch Human Sci & Environm, Hyogo, Japan
来源
2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA) | 2012年
关键词
image segmentation; liver CT images; breast MRI images; clustering; K-means; normalized cuts; SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is an essential process for most analysis tasks of medical images. That's because having good segmentation results is useful for both physicians and patients via providing important information for surgical planning and early disease detection. This paper aims at evaluating the performance of the K-means clustering algorithm. To achieve this, we applied the K-means approach on different medical images including liver CT and breast MRI images. Experimental results obtained show that the overall segmentation accuracy offered by the K-means approach is high compared to segmentation accuracy by the well-known normalized cuts segmentation approach.
引用
收藏
页码:455 / 459
页数:5
相关论文
共 50 条
  • [41] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [42] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22
  • [43] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [44] Evaluating Factors affecting sentences similarity and paraphrasing identification Using K-means clustering
    Alian, Marwah
    Awajan, Arafat
    EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT: A 2025 VISION TO SUSTAIN ECONOMIC DEVELOPMENT DURING GLOBAL CHALLENGES, 2020, : 952 - 959
  • [45] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [46] A Combined Approach Based on K-Means and Modified Electromagnetism-Like Mechanism for Data Clustering
    Mehdizadeh, Esmaeil
    Teimouri, Mohammad
    Zaretalab, Arash
    Niaki, S. T. A.
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2017, 16 (05) : 1279 - 1307
  • [47] Graphical Image Region Extraction with K-Means Clustering and Watershed
    Jardim, Sandra
    Antonio, Joao
    Mora, Carlos
    JOURNAL OF IMAGING, 2022, 8 (06)
  • [48] PSO Aided k-Means Clustering: Introducing Connectivity in k-Means
    Breaban, Mihaela Elena
    Luchian, Henri
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1227 - 1234
  • [49] Segmentation of peen forming patterns using k-means clustering
    Sushitskii, Vladislav
    Miao, Hong Yan
    Levesque, Martin
    Gosselin, Frederick P.
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 119 : 867 - 877
  • [50] Fast K-means for Large Scale Clustering
    Hu, Qinghao
    Wu, Jiaxiang
    Bai, Lu
    Zhang, Yifan
    Cheng, Jian
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2099 - 2102