On p-adic absolute Hodge cohomology and syntomic coefficients. I

被引:15
|
作者
Deglise, Frederic [1 ]
Niziol, Wieslawa [1 ]
机构
[1] Ecole Normale Super Lyon, UMPA UMR CNRS 5669, Site Monod,46,Allee Italie, F-69364 Lyon 07, France
关键词
Absolute Hodge cohomology; syntomic cohomology; syntomic coefficients; DG-CATEGORIES; K-THEORY; REPRESENTATIONS; SHEAVES; CONSTRUCTION; VARIETIES; REDUCTION; DUALITY; MOTIVES; CURVES;
D O I
10.4171/CMH/430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We interpret syntomic cohomology defined in [50] as a p-adic absolute Hodge cohomology. This is analogous to the interpretation of Deligne-Beilinson cohomology as an absolute Hodge cohomology by Beilinson [8] and generalizes the results of Bannai [6] and Chiarellotto, Ciccioni, Mazzari [15] in the good reduction case. This interpretation yields a simple construction of the syntomic descent spectral sequence and its degeneration for projective and smooth varieties. We introduce syntomic coefficients and show that in dimension zero they form a full triangulated subcategory of the derived category of potentially semistable Galois representations. Along the way, we obtain p-adic realizations of mixed motives including p-adic comparison isomorphisms. We apply this to the motivic fundamental group generalizing results of Olsson and Vologodsky [56, 71].
引用
收藏
页码:71 / 131
页数:61
相关论文
共 48 条
  • [1] Syntomic cohomology and p-adic motivic cohomology
    Ertl, Veronika
    Niziol, Wieslawa
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 100 - 131
  • [2] Syntomic cohomology and p-adic regulators for varieties over p-adic fields
    Nekovar, Jan
    Niziol, Wieslawa
    Berger, Laurent
    Deglise, Frederic
    ALGEBRA & NUMBER THEORY, 2016, 10 (08) : 1695 - 1790
  • [3] p-adic Hodge-theoretic properties of etale cohomology with mod p coefficients, and the cohomology of Shimura varieties
    Emerton, Matthew
    Gee, Toby
    ALGEBRA & NUMBER THEORY, 2015, 9 (05) : 1035 - 1088
  • [4] Syntomic complexes and p-adic nearby cycles
    Colmez, Pierre
    Niziol, Wieslawa
    INVENTIONES MATHEMATICAE, 2017, 208 (01) : 1 - 108
  • [5] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [6] Syntomic complexes and p-adic etale Tate twists
    Bhatt, Bhargav
    Mathew, Akhil
    FORUM OF MATHEMATICS PI, 2023, 11
  • [7] New p-adic hypergeometric functions and syntomic regulators
    Asakura, Masanori
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (02): : 393 - 451
  • [8] ON THE GALOIS STRUCTURE OF ARITHMETIC COHOMOLOGY I: COMPACTLY SUPPORTED p-ADIC COHOMOLOGY
    Burns, David
    NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 294 - 321
  • [9] Hilbert modular forms and p-adic Hodge theory
    Saito, Takeshi
    COMPOSITIO MATHEMATICA, 2009, 145 (05) : 1081 - 1113
  • [10] Cohomology of p-adic analytic curves
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (03) : 511 - 655