Computer Aided Detection of Cavernous Malformation in T2-weighted Brain MR Images

被引:0
|
作者
Wang, Huiquan [1 ]
Xu, Hongming [1 ]
Ahmed, S. Nizam [2 ]
Mandal, Mrinal [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
[2] Univ Alberta, Dept Med, Edmonton, AB T6G 2B7, Canada
关键词
TUMORS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cavernous malformation or cavernomas is abnormal development of brain blood vessels and affect an estimated 0.5% of the world population. These could cause seizures, intracerebral hemorrhage and various neurological deficits based on the location of the lesion. Radiologists usually analysis brain magnetic resonance (MR) images to detect cavernomas. However, automatic detection of cavernomas by computer has not been investigated enough. This paper proposes a computer aided cavernomas detection method based on MR images analysis. The proposed method includes three steps: brain extraction based on deformable contour (to remove the non-brain tissues from image), template matching (to find suspected cavernomas regions) and post-processing (to get rid of false positives based on size, shape and brightness information). The performance of the proposed technique is evaluated and a sensitivity of 0.92 is obtained after testing.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 50 条
  • [1] T2*-weighted MR images of a patient with familial cerebral cavernous malformation
    Maeda, Kengo
    Terashima, Tomoya
    Kawai, Hiromichi
    Sanada, Mitsuru
    INTERNAL MEDICINE, 2007, 46 (08) : 541 - 542
  • [2] Computer-aided diagnosis of cavernous malformations in brain MR images
    Wang, Huiquan
    Ahmed, S. Nizam
    Mandal, Mrinal
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2018, 66 : 115 - 123
  • [3] Mathematical Morphology Aided Enhancement and Segmentation of T2-Weighted Brain MRI Images
    Sarkar, Shramana Guha
    Dey, Debangshu
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL POWER AND INSTRUMENTATION (ICICPI), 2016, : 122 - 126
  • [4] Computer-Aided Tumor Segmentation from T2-Weighted MR Images of Patient-Derived Tumor Xenografts
    Roy, Sudipta
    Shoghi, Kooresh Isaac
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 159 - 171
  • [5] MR IMAGING OF BRAIN METASTASES (1)T2-WEIGHTED IMAGES AS A SCREENING SEQUENCE
    HOSTEN, N
    SCHORNER, W
    SCHUBEUS, P
    FELIX, R
    FORTSCHRITTE AUF DEM GEBIETE DER RONTGENSTRAHLEN UND DER NEUEN BILDGEBENDEN VERFAHREN, 1990, 153 (03): : 321 - 326
  • [6] Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images
    Dvorak, P.
    Kropatsch, W. G.
    Bartusek, K.
    MEASUREMENT SCIENCE REVIEW, 2013, 13 (05): : 223 - 230
  • [7] Hyperacute subarachnoid hemorrhage on T2-weighted MR images
    Rumboldt, Z
    Kalousek, M
    Castillo, M
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2003, 24 (03) : 472 - 475
  • [8] Contrast Enhancement by Combining T1-and T2-Weighted Structural Brain MR Images
    Misaki, Masaya
    Savitz, Jonathan
    Zotev, Vadim
    Phillips, Raquel
    Yuan, Han
    Young, Kymberly D.
    Drevets, Wayne C.
    Bodurka, Jerzy
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (06) : 1609 - 1620
  • [9] Thoracic cavernous malformations on T2*-weighted MR images
    Maeda, Kengo
    Kawai, Hiromichi
    Sanada, Mitsuru
    INTERNAL MEDICINE, 2008, 47 (11) : 1073 - 1074
  • [10] Semiautomated Segmentation of Polycystic Kidneys in T2-Weighted MR Images
    Kline, Timothy L.
    Edwards, Marie E.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Torres, Vicente E.
    Erickson, Bradley J.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (03) : 605 - 613