The federal channel at Port of Miami, Florida, USA, was dredged between late 2013 and early 2015 to widen and deepen the channel, Due to the limited spatial extent of impact-assessment monitoring associated with the project, the extent of the dredging impacts on surrounding coral reefs has not been well quantified, Previously published remote sensing analyses, as well as agency and anecdotal reports suggest the most severe and largest area of sedimentation occurred on a coral reef feature referred to as the Inner Reef, particularly in the sector north of the channel. A confounding regional warm-water mass bleaching event followed by a coral disease outbreak during this same time frame made the assessment of dredging-related impacts to coral reefs adjacent to the federal channel difficult but still feasible. The current study sought to better understand the sedimentation impacts that occurred in the coral reef environment surrounding Port from of Miami, to distinguish those impacts other regional events or disturbances, and provide supplemental information on impact assessment that will inform discussions on compensatory mitigation requirements. To this end, in water field assessments conducted after the completion of dredging and a time series analysis of tagged corals photographed pre-, during, and post-dredging, are used to discern dredging-related sedimentation impacts for the Inner Reef north. Results indicate increased sediment accumulation, severe in certain times and places, and an associated biological response (e.g., higher prevalence of partial mortality of corals) extended up to 700 m from the channel, whereas project-associated monitoring was limited to 50 m from the channel. These results can contribute to more realistic prediction of areas of indirect effect from dredging projects needed to accurately evaluate proposed projects and design appropriate compliance monitoring. Dredging projects near valuable and sensitive habitats subject to local and global stressors require monitoring methods capable of discerning non-dredging related impacts and adaptive management to ensure predicted and unpredicted project-related impacts are quantified. Anticipated increasing frequency and intensity of seasonal warming stress also suggests that manageable-but-unavoidable local stressors such as dredging should be partitioned from such seasonal thermal stress events.
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
Smith, Kylie M.
Pharo, Devon M.
论文数: 0引用数: 0
h-index: 0
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
Pharo, Devon M.
Shea, Colin P.
论文数: 0引用数: 0
h-index: 0
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, St Petersburg, FL 33701 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
Shea, Colin P.
Reckenbeil, Brian A.
论文数: 0引用数: 0
h-index: 0
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
Reckenbeil, Brian A.
Maxwell, Kerry E.
论文数: 0引用数: 0
h-index: 0
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
Maxwell, Kerry E.
Sharp, William C.
论文数: 0引用数: 0
h-index: 0
机构:
Fish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USAFish & Wildlife Res Inst, Florida Fish & Wildlife Conservat Commiss, 2796 Overseas Highway,Suite 119, Marathon, FL 33050 USA
机构:
Nova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
Nova Southeastern Univ, SECLER Study Environm Conservat Leading Edge Res, Ft Lauderdale, FL 33328 USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
Giarikos, Dimitrios G.
White, Laura
论文数: 0引用数: 0
h-index: 0
机构:
Nova Southeastern Univ, Dept Marine & Environm Sci, Ft Lauderdale, FL USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
White, Laura
Daniels, Andre M.
论文数: 0引用数: 0
h-index: 0
机构:
US Geol Survey, Wetland & Aquat Res Ctr, Davie, FL USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
Daniels, Andre M.
Santos, Radleigh G.
论文数: 0引用数: 0
h-index: 0
机构:
Nova Southeastern Univ, SECLER Study Environm Conservat Leading Edge Res, Ft Lauderdale, FL 33328 USA
Nova Southeastern Univ, Dept Math, Ft Lauderdale, FL USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
Santos, Radleigh G.
Baldauf, Paul E.
论文数: 0引用数: 0
h-index: 0
机构:
Nova Southeastern Univ, SECLER Study Environm Conservat Leading Edge Res, Ft Lauderdale, FL 33328 USA
Nova Southeastern Univ, Dept Marine & Environm Sci, Ft Lauderdale, FL USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA
Baldauf, Paul E.
Hirons, Amy C.
论文数: 0引用数: 0
h-index: 0
机构:
Nova Southeastern Univ, SECLER Study Environm Conservat Leading Edge Res, Ft Lauderdale, FL 33328 USA
Nova Southeastern Univ, Dept Marine & Environm Sci, Ft Lauderdale, FL USANova Southeastern Univ, Chem & Phys, Ft Lauderdale, FL 33328 USA