REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

被引:0
作者
Cung The Anh [1 ]
Tang Quoc Bao [2 ]
Nguyen Van Thanh [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[3] Hanoi Natl Univ, Foreign Languages Specialized Sch, Univ Languages & Int Studies, Hanoi, Vietnam
关键词
Random dynamical systems; random attractors; regularity; stochastic degenerate parabolic equations; asymptotic a priori estimate method; REACTION-DIFFUSION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; GLOBAL ATTRACTORS; UNBOUNDED-DOMAINS; EXISTENCE; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stochastic semilinear degenerate parabolic equation du + [-div(sigma(x)del u) + f(u) + lambda u] dt = gdt + Sigma(m)(j=1) h(j)d omega(j) in a bounded domain O subset of R-N, with the nonlinearity satisfies an arbitrary polynomial growth condition. The random dynamical system generated by the equation is shown to have a random attractor {A(omega)}omega is an element of Omega in D-0(1) (O, sigma) boolean AND L-p(O). The results obtained improve some recent ones for stochastic semilinear degenerate parabolic equations.
引用
收藏
页数:22
相关论文
共 50 条
[41]   Random attractors for a class of stochastic partial differential equations driven by general additive noise [J].
Gess, Benjamin ;
Liu, Wei ;
Roeckner, Michael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :1225-1253
[42]   Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations [J].
Wang, Renhai ;
Guo, Boling ;
Liu, Wei ;
Nguyen, Da Tien .
MATHEMATISCHE ANNALEN, 2024, 389 (01) :671-718
[43]   H1-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises [J].
Zhao, Wenqiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (10) :2707-2721
[44]   Regularity results for degenerate parabolic equations with Lm data [J].
Mokhtari, F. ;
Khelifi, H. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (12) :2001-2015
[45]   Random attractors for the stochastic coupled suspension bridge equations of Kirchhoff type [J].
Xu, Ling ;
Huang, Jianhua ;
Ma, Qiaozhen .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[46]   UPPER SEMI-CONTINUITY OF ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC PARABOLIC EQUATIONS WITH DELAY [J].
Chen, Pengyu ;
Zhang, Xuping .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08) :4325-4357
[47]   Random attractors for rough stochastic partial differential equations [J].
Yang, Qigui ;
Lin, Xiaofang ;
Zeng, Caibin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 371 :50-82
[48]   Attractors for a class of semi-linear degenerate parabolic equations [J].
Kogoj, Alessia E. ;
Sonner, Stefanie .
JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (03) :675-691
[49]   Attractors for a class of semi-linear degenerate parabolic equations [J].
Alessia E. Kogoj ;
Stefanie Sonner .
Journal of Evolution Equations, 2013, 13 :675-691
[50]   RANDOM ATTRACTORS FOR NON-AUTONOMOUS STOCHASTIC BRINKMAN-FORCHHEIMER EQUATIONS ON UNBOUNDED DOMAINS [J].
Wang, Shu ;
Si, Mengmeng ;
Yang, Rong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (05) :1621-1636