REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

被引:0
作者
Cung The Anh [1 ]
Tang Quoc Bao [2 ]
Nguyen Van Thanh [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[3] Hanoi Natl Univ, Foreign Languages Specialized Sch, Univ Languages & Int Studies, Hanoi, Vietnam
关键词
Random dynamical systems; random attractors; regularity; stochastic degenerate parabolic equations; asymptotic a priori estimate method; REACTION-DIFFUSION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; GLOBAL ATTRACTORS; UNBOUNDED-DOMAINS; EXISTENCE; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stochastic semilinear degenerate parabolic equation du + [-div(sigma(x)del u) + f(u) + lambda u] dt = gdt + Sigma(m)(j=1) h(j)d omega(j) in a bounded domain O subset of R-N, with the nonlinearity satisfies an arbitrary polynomial growth condition. The random dynamical system generated by the equation is shown to have a random attractor {A(omega)}omega is an element of Omega in D-0(1) (O, sigma) boolean AND L-p(O). The results obtained improve some recent ones for stochastic semilinear degenerate parabolic equations.
引用
收藏
页数:22
相关论文
共 50 条
[31]   Random attractors via pathwise mild solutions for stochastic parabolic evolution equations [J].
Kuehn, Christian ;
Neamtu, Alexandra ;
Sonner, Stefanie .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) :2631-2663
[32]   Random attractors via pathwise mild solutions for stochastic parabolic evolution equations [J].
Christian Kuehn ;
Alexandra Neamţu ;
Stefanie Sonner .
Journal of Evolution Equations, 2021, 21 :2631-2663
[33]   PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION [J].
Li, Xin ;
Sun, Chunyou ;
Zhou, Feng .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 47 (02) :511-528
[34]   Random attractors for stochastic plate equations with memory in unbounded domains [J].
Yao, Xiao Bin .
OPEN MATHEMATICS, 2021, 19 (01) :1435-1460
[35]   EXISTENCE AND REGULARITY RESULTS FOR A SINGULAR PARABOLIC EQUATIONS WITH DEGENERATE COERCIVITY [J].
El Ouardy, Mounim ;
El Hadfi, Youssef ;
Ifzarne, Aziz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (01) :117-141
[36]   The conjugacy of stochastic and random differential equations and the existence of global attractors [J].
Imkeller P. ;
Schmalfuss B. .
Journal of Dynamics and Differential Equations, 2001, 13 (2) :215-249
[37]   Random attractors for locally monotone stochastic partial differential equations [J].
Gess, Benjamin ;
Liu, Wei ;
Schenke, Andre .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) :3414-3455
[38]   GLOBAL ATTRACTORS FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS WITH MEMORY [J].
Ma, Shan ;
You, Bo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03) :2044-2055
[39]   Regularity of random attractors for non-autonomous stochastic discrete complex Ginzburg-Landau equations [J].
Yang, Yuan ;
Shu, Ji ;
Zhang, Jian .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (05) :587-608
[40]   Stochastic non-isotropic degenerate parabolic-hyperbolic equations [J].
Gess, Benjamin ;
Souganidis, Panagiotis E. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (09) :2961-3004