REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC SEMILINEAR DEGENERATE PARABOLIC EQUATIONS

被引:0
作者
Cung The Anh [1 ]
Tang Quoc Bao [2 ]
Nguyen Van Thanh [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
[3] Hanoi Natl Univ, Foreign Languages Specialized Sch, Univ Languages & Int Studies, Hanoi, Vietnam
关键词
Random dynamical systems; random attractors; regularity; stochastic degenerate parabolic equations; asymptotic a priori estimate method; REACTION-DIFFUSION EQUATIONS; RANDOM DYNAMICAL-SYSTEMS; GLOBAL ATTRACTORS; UNBOUNDED-DOMAINS; EXISTENCE; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stochastic semilinear degenerate parabolic equation du + [-div(sigma(x)del u) + f(u) + lambda u] dt = gdt + Sigma(m)(j=1) h(j)d omega(j) in a bounded domain O subset of R-N, with the nonlinearity satisfies an arbitrary polynomial growth condition. The random dynamical system generated by the equation is shown to have a random attractor {A(omega)}omega is an element of Omega in D-0(1) (O, sigma) boolean AND L-p(O). The results obtained improve some recent ones for stochastic semilinear degenerate parabolic equations.
引用
收藏
页数:22
相关论文
共 50 条
[21]   Hausdorff Dimension of Random Attractors for a Stochastic Delayed Parabolic Equation in Banach Spaces [J].
Hu, Wenjie ;
Caraballo, Tomas ;
Duan, Yueliang .
APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 92 (01)
[22]   Higher-order robust attractors for stochastic retarded degenerate parabolic equations [J].
Zhang, Qiangheng .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (05) :789-819
[23]   REGULARITY AND FRACTAL DIMENSION OF PULLBACK ATTRACTORS FOR A NON-AUTONOMOUS SEMILINEAR DEGENERATE PARABOLIC EQUATION [J].
Cung The Anh ;
Tang Quoc Bao ;
Le Thi Thuy .
GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) :431-448
[24]   Existence and Regularity of Random Attractors for Stochastic Evolution Equations Driven by Rough Noise [J].
Neamtu, Alexandra Blessing ;
Seitz, Tim .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
[25]   Double stabilities of pullback random attractors for stochastic delayed p-Laplacian equations [J].
Zhang, Qiangheng ;
Li, Yangrong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) :8406-8433
[26]   REGULARITY OF WONG-ZAKAI APPROXIMATIONS FOR A CLASS OF STOCHASTIC DEGENERATE PARABOLIC EQUATIONS WITH MULTIPLICATIVE NOISE [J].
Huang, Ming ;
Gao, Lili ;
Yang, Lu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
[27]   STRONG CONVERGENCE OF BI-SPATIAL RANDOM ATTRACTORS FOR PARABOLIC EQUATIONS ON THIN DOMAINS WITH ROUGH NOISE [J].
Li, Fuzhi ;
Li, Yangrong ;
Wang, Renhai .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (02) :659-682
[28]   Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains [J].
Krause, Andrew ;
Wang, Bixiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) :1018-1038
[29]   Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn [J].
Gu, Anhui ;
Li, Dingshi ;
Wang, Bixiang ;
Yang, Han .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (12) :7094-7137
[30]   Random attractors for singular stochastic evolution equations [J].
Gess, Benjamin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (03) :524-559