Bounds for the b-chromatic number of the Mycielskian of some families of graphs

被引:0
作者
Balakrishnan, R. [1 ]
Raj, S. Francis [1 ]
机构
[1] Bharathidasan Univ, Dept Math, Tiruchirappalli 620024, India
关键词
b-chromatic number; Mycielskian; split graphs and hypercubes;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The b-chromatic number b(G) of a graph G is defined as the maximum number k of colors in a proper coloring of the vertices of G in such a way that each color class contains at least one vertex adjacent to a vertex of every other color class. Let mu(G) denote the Mycielskian of G. In this paper, it is shown that if G is a graph with b-chromatic number b and for which the number of vertices of degree at least b is at most 2b - 2, then b(mu(G)) lies in the interval [b+1, 2b-1]. As a consequence, it follows that b(G) +1 <= b(mu(G)) <= 2b(G)-1 for G in any of the following families: split graphs, K-k,K-k - {a 1-factor}, the hypercubes Q(p), where p >= 3, trees and a special class of bipartite graphs. We show further that for any positive integer b and every integer k is an element of [b + 1, 2b - 1], there exists a graph G belonging to the family mentioned above, with b(G) = b and b(mu(G)) = k.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 14 条
[1]   On the b-continuity property of graphs [J].
Barth, Dominique ;
Cohen, Johanne ;
Faik, Taoufik .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (13) :1761-1768
[2]   On b-colorings in regular graphs [J].
Blidia, Mostafa ;
Maffray, Frederic ;
Zemir, Zoham .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) :1787-1793
[3]   On approximating the b-chromatic number [J].
Corteel, S ;
Valencia-Pabon, M ;
Vera, JC .
DISCRETE APPLIED MATHEMATICS, 2005, 146 (01) :106-110
[4]  
Effantin B, 2003, DISCRET MATH THEOR C, V6, P45
[5]  
Faik T., 2004, Electronic Notes in Discrete Mathematics, V17, P151, DOI [10.1016/j.endm.2004.03.030, DOI 10.1016/J.ENDM.2004.03.030]
[6]   On minimally b-imperfect graphs [J].
Hoang, Chinh T. ;
Sales, Claudia Linhares ;
Maffray, Frederic .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (17) :3519-3530
[7]   On the b-dominating coloring of graphs [J].
Hoàng, CT ;
Kouider, M .
DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) :176-186
[8]   The b-chromatic number of a graph [J].
Irving, RW ;
Manlove, DF .
DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) :127-141
[9]   The b-Chromatic Number of Cubic Graphs [J].
Jakovac, Marko ;
Klavzar, Sandi .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :107-118
[10]   On b-coloring of the Kneser graphs [J].
Javadi, Ramin ;
Omoomi, Behnaz .
DISCRETE MATHEMATICS, 2009, 309 (13) :4399-4408