STABILITY OF FINITE DIFFERENCE SCHEMES FOR COMPLEX DIFFUSION PROCESSES

被引:18
作者
Araujo, Aderito [1 ]
Barbeiro, Silvia [1 ]
Serranho, Pedro [2 ,3 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[2] Open Univ, Dept Sci & Technol, Math Sect, P-2740122 Oeiras, Portugal
[3] Univ Coimbra, Fac Med, IBILI, P-3000548 Coimbra, Portugal
关键词
finite differences; nonlinear complex diffusion; stability; IMAGE-ENHANCEMENT;
D O I
10.1137/110825789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a rigorous proof for the stability of a class of finite difference schemes applied to nonlinear complex diffusion equations. Complex diffusion is a common and broadly used denoising procedure in image processing. To illustrate the theoretical results we present some numerical examples based on an explicit scheme applied to a nonlinear equation in the context of image denoising.
引用
收藏
页码:1284 / 1296
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 2010, GRAD STUD MATH
[2]  
[Anonymous], P VMV
[3]   Improved adaptive complex diffusion despeckling filter [J].
Bernardes, Rui ;
Maduro, Cristina ;
Serranho, Pedro ;
Araujo, Aderito ;
Barbeiro, Silvia ;
Cunha-Vaz, Jose .
OPTICS EXPRESS, 2010, 18 (23) :24048-24059
[4]   High accuracy optical flow estimation based on a theory for warping [J].
Brox, T ;
Bruhn, A ;
Papenberg, N ;
Weickert, J .
COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 :25-36
[5]   STABILITY ANALYSIS OF DIFFERENCE-SCHEMES FOR VARIABLE-COEFFICIENT SCHRODINGER TYPE EQUATIONS [J].
CHAN, TF ;
SHEN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) :336-349
[6]  
Crank J., 1979, MATH DIFFUSION, V2nd
[7]   Automated detection of retinal layer structures on optical coherence tomography images [J].
Fernández, DC ;
Salinas, HM ;
Puliafito, CA .
OPTICS EXPRESS, 2005, 13 (25) :10200-10216
[8]   Image enhancement and denoising by complex diffusion processes [J].
Gilboa, G ;
Sochen, N ;
Zeevi, YY .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) :1020-1036
[9]  
Grossauer H, 2003, LECT NOTES COMPUT SC, V2695, P225
[10]   SURVEY OF THE STABILITY OF LINEAR FINITE DIFFERENCE EQUATIONS [J].
LAX, PD ;
RICHTMYER, RD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1956, 9 (02) :267-293