A Generic Method for Rational Scalable Synthesis of Monodisperse Metal Sulfide Nanocrystals

被引:84
作者
Zhang, Haitao [1 ]
Hyun, Byung-Ryool [2 ]
Wise, Frank W. [2 ]
Robinson, Richard D. [1 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Scalable; nanocrystal; metal sulfide; rational synthesis; organic phase; generic method; VI SEMICONDUCTOR NANOCRYSTALS; LIGHT-EMITTING-DIODES; QUANTUM DOTS; BI2S3; NANOCRYSTALS; CDSE NANOCRYSTALS; NANORODS; GROWTH; NANOPARTICLES; EVOLUTION; PRECURSOR;
D O I
10.1021/nl303207s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A rational Synthetic Method is developed to produce, monodisperse metal sulfide nanocrystals (NCs) in organic nonpolar, solutions by using (NH4)(2)S as a sulfide precursor. (NH4)(2)S is stabilized in an organic primary amine solution and exhibits high. reactivity toward metal complexes. This novel technique :exhibits wide applicability for organic phase Metal sulfide NC synthesis: a large variety of monodisperse NCs have been synthesized, including, Cu2S, CdS, SnS, ZnS, MnS, Ag2S, and Bi2S3. The stoichiometric, reactions between (NH4)(2)S and metal salts afford high conversion yields; and large-scale production of monodisperse NCs (more than 30 g) can be synthesized in a single reaction. The high reactivity of (NH4)(2)S enables low temperature (100 degrees C) syntheses, and the air stable materials (such as CdS NCO. can be produced in air.. Moreover, this low-temperature technique can be used to produce small size NCs which are difficult to be synthesized by the conventional high temperature methods, such as sub-5 nm Ag2S and Bi2S3 quantum dots:
引用
收藏
页码:5856 / 5860
页数:5
相关论文
共 50 条
[31]   Metallurgical leaching of metal powder for facile and generalized synthesis of metal sulfide nanocrystals [J].
Shi, Xing ;
Zhang, Jue ;
Yang, Xiaohai ;
Liu, Wei ;
Li, Li ;
Li, Gui ;
Liu, Jianbo ;
Wang, Kemin .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 497 :344-351
[32]   Phase-Controlled Synthesis and Quasi-Static Dielectric Resonances in Silver Iron Sulfide (AgFeS2) Nanocrystals [J].
Lee, Soohyung ;
Hoyer, Chad E. ;
Liao, Can ;
Li, Xiaosong ;
Holmberg, Vincent C. .
SMALL, 2022, 18 (09)
[33]   Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur [J].
Thimsen, Elijah ;
Kortshagen, Uwe R. ;
Aydil, Eray S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (31)
[34]   Unravelling the intricacies of solvents and sulfur sources in colloidal synthesis of metal sulfide semiconductor nanocrystals [J].
Mauritz, Vincent ;
Crisp, Ryan W. .
JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (30) :11319-11334
[35]   Scalable and Universal Route for the Deposition of Binary, Ternary, and Quaternary Metal Sulfide Materials from Molecular Precursors [J].
Murtaza, Ghulam ;
Alderhami, Suliman ;
Alharbi, Yasser T. ;
Zulfiqar, Usama ;
Hossin, Mousa ;
Alanazi, Abdulaziz M. ;
Almanqur, Laila ;
Onche, Emmanuel Usman ;
Venkateswaran, Sai P. ;
Lewis, David J. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (02) :1952-1961
[36]   Sustainable scalable synthesis of sulfide nanocrystals at low cost with an ionic liquid sulfur precursor [J].
Yuan, Bin ;
Egner, Timothy Karl ;
Venditti, Vincenzo ;
Cademartiri, Ludovico .
NATURE COMMUNICATIONS, 2018, 9
[37]   Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing [J].
Swapankumar Ghosh ;
Damodaran Divya ;
Kottayilpadi C. Remani ;
Thadathil S. Sreeremya .
Journal of Nanoparticle Research, 2010, 12 :1905-1911
[38]   Synthesis and characterisation of magnetic iron sulfide nanocrystals [J].
Beal, John H. L. ;
Etchegoin, Pablo G. ;
Tilley, Richard D. .
JOURNAL OF SOLID STATE CHEMISTRY, 2012, 189 :57-62
[39]   Synthesis and structural studies of copper sulfide nanocrystals [J].
Ajibade, Peter A. ;
Botha, Nandipha L. .
RESULTS IN PHYSICS, 2016, 6 :581-589
[40]   Synthesis and characterization of semiconductor metal sulfide nanocrystals using microemulsion technique [J].
Tolia, Jyoti ;
Chakraborty, Mousumi ;
Murthy, Z. V. P. .
CRYSTAL RESEARCH AND TECHNOLOGY, 2012, 47 (08) :909-916