This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.
机构:
Kafrelsheikh Univ, Fac Commerce, Dept Stat Math & Insurance, Kafr Al Sheikh, EgyptKafrelsheikh Univ, Fac Commerce, Dept Stat Math & Insurance, Kafr Al Sheikh, Egypt