A Novel Heterojunction BiOBr/Bismuth Oxyhydrate Photocatalyst with Highly Enhanced Visible Light Photocatalytic Properties

被引:191
作者
Shenawi-Khalil, Sanaa [1 ]
Uvarov, Vladimir [2 ]
Fronton, Sveta [1 ]
Popov, Inna [2 ]
Sasson, Yoel [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, Casali Inst Appl Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Harvey M Krueger Ctr Nanosci & Nanotechnol, Unit Nanoscop Characterizat, IL-91904 Jerusalem, Israel
关键词
BIOX X; ORGANIC CONTAMINANTS; DEGRADATION; BR; CL; DECOMPOSITION; OXYGEN;
D O I
10.1021/jp3009964
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, a facile and effective method to modify the photocatalytic performance of a bismuth oxybromide (BiOBr) semiconductor through the fabrication of a heterojunction with a hydrated bismuth oxide (BHO) is reported. The new yBiOBr-(1 - y)BHO heterojunction, synthesized by a simple hydrothermal method, exhibits a high photocatalytic activity under visible light irradiation for the photodegradation of typical organic pollutants in water, such as Rhodamine B (RhB) and acetophenone (AP). Both the individual BiOBr and BHO components show very low photocatalytic efficiency. Furthermore, the unique photocatalytic performance of the new hybrid material was demonstrated through the uphill photocatalytic reaction that involves the oxidation of potassium iodide (KI) to triiodide. The remarkable photocatalytic activity of the coupled system is directly related to the effectual charge carrier separation due to the formation of the heterostructure. 0.9BiOBr-0.1BHO shows a higher photocatalytic activity as compared with other members of the same family, 0.8BiOCl-0.2BHO and 0.8BiOI-0.2BHO, which is directly ascribed to a synergistic effect of the energy band-gap structure and flow of charge carriers through the heterojunction, surface area, and light absorbance. In comparison with TiO2 (Degussa P25), the new composite material demonstrated 10.7 times higher activity in removing aqueous RhB under visible light (lambda >= 420 nm) irradiation. Study of the photocatalytic mechanism proves that the degradation of RhB under visible light irradiation over the as-prepared 0.9BiOBr-0.1BHO is mainly via a direct hole oxidation mechanism and superoxide oxidation pathways. The resulting yBiOBr-(1 - y)BHO composites exhibit high photocatalytic and thermal stabilities and are very promising photocatalysts for degradation of organic pollutants in water and for other applications.
引用
收藏
页码:11004 / 11012
页数:9
相关论文
共 57 条
[1]   Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites [J].
Ai, Zhihui ;
Ho, Wingkei ;
Lee, Shuncheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (51) :25330-25337
[2]   Photocatalytic properties of BiOX (X = Cl, Br, and I) [J].
An Huizhong ;
Du Yi ;
Wang Tianmin ;
Wang Cong ;
Hao Weichang ;
Zhang Junying .
RARE METALS, 2008, 27 (03) :243-250
[3]  
Bahemann D. W., 2000, RES CHEM INTERMEDIAT, V26, P207
[4]   Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties [J].
Cao, Jing ;
Xu, Benyan ;
Luo, Bangde ;
Lin, Haili ;
Chen, Shifu .
CATALYSIS COMMUNICATIONS, 2011, 13 (01) :63-68
[5]   Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst [J].
Chai, Seung Yong ;
Kim, Yong Joo ;
Jung, Myong Hak ;
Chakraborty, Ashok Kumar ;
Jung, Dongwoon ;
Lee, Wan In .
JOURNAL OF CATALYSIS, 2009, 262 (01) :144-149
[6]   Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy [J].
Chang, Xiaofeng ;
Yu, Gang ;
Huang, Jun ;
Li, Zheng ;
Zhu, Shufeng ;
Yu, Pingfeng ;
Cheng, Cheng ;
Deng, Shubo ;
Ji, Guangbin .
CATALYSIS TODAY, 2010, 153 (3-4) :193-199
[7]   BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance [J].
Chang, Xiaofeng ;
Huang, Jun ;
Cheng, Cheng ;
Sui, Qian ;
Sha, Wei ;
Ji, Guangbin ;
Deng, Shubo ;
Yu, Gang .
CATALYSIS COMMUNICATIONS, 2010, 11 (05) :460-464
[8]   Visible light induced photocatalytic degradation of organic pollutants [J].
Chatterjee, D ;
Dasgupta, S .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2005, 6 (2-3) :186-205
[9]   In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Wang, Peng ;
Wang, Zeyan ;
Lou, Zaizhu ;
Wang, Junpeng ;
Qin, Xiaoyan ;
Zhang, Xiaoyang ;
Dai, Ying .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7054-7056
[10]   One-Step Synthesis of the Nanostructured AgI/BiOI Composites with Highly Enhanced Visible-Light Photocatalytic Performances [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Dai, Ying ;
Qin, Xiaoyan ;
Zhang, Xiaoyang .
LANGMUIR, 2010, 26 (09) :6618-6624