Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks

被引:199
作者
de Ona, Juan [1 ]
Lopez, Griselda [1 ]
Mujalli, Randa [1 ]
Calvo, Francisco J. [1 ]
机构
[1] Univ Granada, TRYSE Res Grp, Dept Civil Engn, ETSI Caminos Canales & Puertos, E-18071 Granada, Spain
关键词
Cluster analysis; Latent Class Clustering; Bayesian Networks; Traffic accidents; Classification; Injury severity; Highways; Road safety; DRIVER INJURY SEVERITY; STATISTICAL-ANALYSIS; CRASH; MODELS; SEGMENTATION; 2-LANE; RULES;
D O I
10.1016/j.aap.2012.10.016
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
One of the principal objectives of traffic accident analyses is to identify key factors that affect the severity of an accident. However, with the presence of heterogeneity in the raw data used, the analysis of traffic accidents becomes difficult. In this paper, Latent Class Cluster (LCC) is used as a preliminary tool for segmentation of 3229 accidents on rural highways in Granada (Spain) between 2005 and 2008. Next, Bayesian Networks (BNs) are used to identify the main factors involved in accident severity for both, the entire database (EDB) and the clusters previously obtained by LCC. The results of these cluster-based analyses are compared with the results of a full-data analysis. The results show that the combined use of both techniques is very interesting as it reveals further information that would not have been obtained without prior segmentation of the data. BN inference is used to obtain the variables that best identify accidents with killed or seriously injured. Accident type and sight distance have been identify in all the cases analysed; other variables such as time, occupant involved or age are identified in EDB and only in one cluster; whereas variables vehicles involved, number of injuries, atmospheric factors, pavement markings and pavement width are identified only in one cluster. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
[2]   Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections [J].
Abdelwahab, HT ;
Abdel-Aty, MA .
HIGHWAY SAFETY: MODELING, ANALYSIS, MANAGEMENT, STATISTICAL METHODS, AND CRASH LOCATION: SAFETY AND HUMAN PERFORMANCE, 2001, (1746) :6-13
[3]   A comparison of learning algorithms for Bayesian networks:: a case study based on data from an emergency medical service [J].
Acid, S ;
de Campos, LM ;
Fernández-Luna, JM ;
Rodríguez, S ;
Rodríguez, JM ;
Salcedo, JL .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2004, 30 (03) :215-232
[4]   FACTOR-ANALYSIS AND AIC [J].
AKAIKE, H .
PSYCHOMETRIKA, 1987, 52 (03) :317-332
[5]   Using logistic regression to estimate the influence of accident factors on accident severity [J].
Al-Ghamdi, AS .
ACCIDENT ANALYSIS AND PREVENTION, 2002, 34 (06) :729-741
[6]  
[Anonymous], 2004, J TRANSPORTATION STA
[7]  
[Anonymous], 2004, Learning Bayesian Networks
[8]  
[Anonymous], 1998, MULTIVARIATE DATA AN
[9]  
[Anonymous], CAN J MARKET RES
[10]   Choosing models in model-based clustering and discriminant analysis [J].
Biernacki, C ;
Govaert, G .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (01) :49-71