A mathematical model for calculating cross-sectional properties of modern wind turbine composite blades

被引:34
作者
Wang, Lin [1 ]
Liu, Xiongwei [2 ]
Guo, Lianggang [3 ]
Renevier, Nathalie [1 ]
Stables, Matthew [1 ]
机构
[1] Univ Cent Lancashire, Sch Comp Engn & Phys Sci, Preston PR1 2HE, Lancs, England
[2] Univ Cumbria, Energus CA14 4JW, Workington, England
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
关键词
Wind turbine blade; Cross-sectional analysis; Composite; Mathematical model; Classical lamination theory (CLT); Extended Bredt-Batho shear flow theory (EBSFT); BEHAVIOR; BEAMS;
D O I
10.1016/j.renene.2013.10.046
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A wind turbine blade generally has complex structures including several layers of composite materials with shear webs. It is essential but also inherently difficult to accurately and rapidly calculate the cross-sectional properties of a complex composite blade for the structural dynamics and aeroelasticity analysis of the blade. In this paper, a novel mathematical model for calculating the cross-sectional properties of composite blades has been developed by incorporating classical lamination theory (CLT) with extended Bredt-Batho shear flow theory (EBSFT). The mathematical model considers the shear web effects and warping effects of composite blades thus greatly improves the accuracy of torsional stiffness calculation compared with the results from direct use of 3D laminate theories. It also avoids complicated post-processing of force-displacement data from computationally expensive 3D finite-element analysis (FEA) thus considerably improves the computational efficiency. A Matlab program was developed to verify the accuracy and efficiency of the mathematical model and a series of benchmark calculation tests were undertaken. The results show that good agreement is achieved comparing with the data from experiment and FEA, and improved accuracy of torsional stiffness calculation due to consideration of the shear web effects is observed comparing with an existing cross-sectional analysis code PreComp. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 25 条
[1]  
Bauchau O. A., 2002, AEROSPACE STRUCTURAL
[2]  
Beer F.P., 1988, VECTOR MECH ENG, V5th
[3]  
Berthelot J.-M., 1999, COMPOSITE MAT MECH B
[4]  
Bir G., 2004, PRELIMINARY STRUCTUR
[5]  
Bir G S, 2006, USERS GUIDE PRECOMP
[6]  
Bitsche RD, 2012, AIRFOIL2BECAS PREPRO
[7]  
Blasques JP, 2012, USERS MANUAL BECAS
[8]   VABS: A new concept for composite rotor blade cross-sectional modeling [J].
Cesnik, CES ;
Hodges, DH .
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 1997, 42 (01) :27-38
[9]   STRUCTURAL BEHAVIOR OF 2-CELL COMPOSITE ROTOR BLADES WITH ELASTIC COUPLINGS [J].
CHANDRA, R ;
CHOPRA, I .
AIAA JOURNAL, 1992, 30 (12) :2914-2921
[10]  
Chen H, 2008, MANUAL PREVABS