Riemann scalar curvature of ideal quantum gases obeying Gentile's statistics

被引:66
作者
Oshima, H
Obata, T
Hara, H
机构
[1] Toho Univ, Sch Med, Dept Phys, Ota Ku, Tokyo 143, Japan
[2] Gunma Natl Coll Technol, Dept Elect Engn, Maebashi, Gumma 371, Japan
[3] Tohoku Univ, Grad Sch Engn Sci, Aoba Ku, Sendai, Miyagi 980, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 36期
关键词
D O I
10.1088/0305-4470/32/36/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The scaler curvature (R) of ideal quantum gases obeying Gentile's statistics is investigated by the method of information geometrical theory. The R value is specified by the fugacity eta and the maximum number, p, of particles in a state. The lowest case p = 1, corresponds to Fermi-Dirac statistics and the unbounded case, p --> infinity, to Bose-Einstein statistics. In contrast to R = 0 for ideal classical gases obeying Boltzmann statistics, we find R = root 2/32 for p greater than or equal to 2 and R = -2 root 2/32 for p = 1, in eta --> 0 which is the classical limit. This means that a quantum statistical character is left in R, in the classical limit. Also, a correlation between the sign of R and a quantum mechanical exchange effect is recognized for eta --> 0 and eta >> 1. Furthermore, we obtain results that support the instability interpretation of R proposed by Janyszek and Mrugala.
引用
收藏
页码:6373 / 6383
页数:11
相关论文
共 23 条
[1]  
Amari S., 1985, LECT NOTES STAT, V28, DOI DOI 10.1007/978-1-4612-5056-2
[2]   THERMODYNAMICS OF A FREE Q-FERMION GAS [J].
DUTT, R ;
GANGOPADHYAYA, A ;
KHARE, A ;
SUKHATME, UP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (15) :2687-2698
[3]  
GENTILE G, 1940, NUOVO CIMENTO, V17, P493, DOI DOI 10.1007/BF02960187
[4]  
Gentile G., 1942, NUOVO CIMENTO, V19, P109
[5]  
Harmann R., 1973, GEOMETRY PHYSIC SYST
[6]  
INGARDEN RS, 1976, TENSOR, V30, P201
[7]  
INGARDEN RS, 1979, TENSOR, V33, P347
[8]   RIEMANNIAN GEOMETRY AND THE THERMODYNAMICS OF MODEL MAGNETIC SYSTEMS [J].
JANYSZEK, H ;
MRUGALA, R .
PHYSICAL REVIEW A, 1989, 39 (12) :6515-6523
[9]  
Janyszek H., 1989, Reports on Mathematical Physics, V27, P145, DOI 10.1016/0034-4877(89)90001-3
[10]   RIEMANNIAN GEOMETRY AND STABILITY OF THERMODYNAMICAL EQUILIBRIUM SYSTEMS [J].
JANYSZEK, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04) :477-490