Two-stage adaptive finite-time modified function projective lag synchronization of chaotic systems

被引:0
作者
Li, Qiaoping [1 ,2 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
[2] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Henan, Peoples R China
来源
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC) | 2018年
关键词
Chaotic systems; Modified function projective lag synchronization; Finite-time control; Adaptive control technique; Sliding-mode variable structure control; Unknown parameter and disturbance; GENERALIZED SYNCHRONIZATION; UNKNOWN-PARAMETERS; STABILITY; PHASE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, using the adaptive control technique and the sliding-mode variable structure control scheme, the finite-time modified function projective lag synchronization of chaotic systems with fully unknown parameters and unknown bounded disturbances is realized through two stages. First, a sliding surface is established to ensure the sliding mode is finite-time stable. Afterwards, by the aid of finite-time control theory and Lyapunov stability theorem, an appropriate adaptive law is designed to ensure the sustained sliding motion occurs in a limited time and the unknown parameters are tackled well. Finally, a simulation is put forward to demonstrate the correctness and effectiveness of the proposed scheme.
引用
收藏
页码:649 / 654
页数:6
相关论文
共 43 条
[11]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496
[12]   Modified function projective synchronization of chaotic system [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2399-2404
[13]   Modified function projective lag synchronization of chaotic systems with disturbance estimations [J].
Gao, Yanbo ;
Sun, Binghua ;
Lu, Guoping .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) :4993-5000
[14]   Synchronization of the unified chaotic system and application in secure communication [J].
Grzybowski, J. M. V. ;
Rafikov, M. ;
Balthazar, J. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (06) :2793-2806
[15]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[16]   Generalized synchronization onset [J].
Hramov, AE ;
Koronovskii, AA ;
Moskalenko, OI .
EUROPHYSICS LETTERS, 2005, 72 (06) :901-907
[17]   An approach to chaotic synchronization [J].
Hramov, AE ;
Koronovskii, AA .
CHAOS, 2004, 14 (03) :603-610
[18]   Anti-synchronization of chaotic oscillators [J].
Kim, CM ;
Rim, S ;
Kye, WH ;
Ryu, JW ;
Park, YJ .
PHYSICS LETTERS A, 2003, 320 (01) :39-46
[19]   H∞ synchronization of chaotic systems via dynamic feedback approach [J].
Lee, S. M. ;
Ji, D. H. ;
Park, Ju H. ;
Won, S. C. .
PHYSICS LETTERS A, 2008, 372 (29) :4905-4912
[20]   Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller [J].
Lin, Jui-Sheng ;
Yan, Jun-Juh .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :1151-1159