Embedded Runge-Kutta scheme for step-size control in the interaction picture method

被引:36
作者
Balac, Stephane [1 ,2 ]
Mahe, Fabrice [1 ,3 ]
机构
[1] Univ Rennes 1, UEB, F-35014 Rennes, France
[2] Enssat, CNRS UMR FOTON 6082, F-22305 Lannion, France
[3] CNRS UMR 6625 IRMAR, F-35042 Rennes, France
关键词
Interaction picture method; Embedded Runge-Kutta method; Gross-Pitaevskii equation; Generalised non-linear Schrodinger equation; Split-step method; SUPERCONTINUUM GENERATION; SIMULATION;
D O I
10.1016/j.cpc.2012.12.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When solving certain evolution type PDEs such as the Schrodinger equation, the Interaction Picture method is a valuable alternative to Split-Step methods. The Interaction Picture method has good computational features when used together with the standard 4th order Runge-Kutta scheme (giving rise to the RK4-IP method). In this paper we present an embedded Runge-Kutta scheme with orders 3 and 4 with the aim to deliver an estimation of the local error for adaptive step-size control purposes in the Interaction Picture method. The corresponding ERK4(3)-IP method preserves the features of the RK4-IP method and provides a local error estimate at no significant extra cost. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1211 / 1219
页数:9
相关论文
共 24 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[2]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[3]   Order estimates in time of splitting methods for the nonlinear Schrodinger equation [J].
Besse, C ;
Bidégaray, B ;
Descombes, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :26-40
[4]  
Caradoc-Davies B.M., 2000, THESIS U OTAGO NZ
[5]   Three-dimensional vortex dynamics in Bose-Einstein condensates [J].
Caradoc-Davies, BM ;
Ballagh, RJ ;
Blakie, PB .
PHYSICAL REVIEW A, 2000, 62 (01) :4
[6]  
Davis M., 2001, THESIS U OXFORD UK
[7]  
Dormand J.R., 1980, Journal of computational and applied mathematics, V6, P19, DOI DOI 10.1016/0771-050X
[8]   NEW RUNGE-KUTTA ALGORITHMS FOR NUMERICAL-SIMULATION IN DYNAMICAL ASTRONOMY [J].
DORMAND, JR ;
PRINCE, PJ .
CELESTIAL MECHANICS, 1978, 18 (03) :223-232
[9]  
Fehlberg E., 1968, TECHNICAL REPORT
[10]  
Fernandez A., 2013, EUR PHYS J APP UNPUB