Soil organic carbon loss from carbon dioxide and methane emissions, as well as runoff and leaching on a hillslope of Regosol soil in a wheat-maize rotation

被引:3
作者
Hua, Keke [1 ,2 ]
Zhu, Bo [1 ]
Wang, Xiaoguo [1 ]
机构
[1] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Peoples R China
[2] Anhui Acad Agr Sci, Soil & Fertilizer Res Inst, Anhui Prov Key Lab Nutrient Recycling Resources &, Hefei 230031, Peoples R China
关键词
Soil carbon dioxide emission; Dissolved organic carbon loss; Flux; Natural rainfall; CLIMATE-CHANGE; GAS EMISSIONS; PURPLE SOIL; CO2; EFFLUX; LAND-USE; OXIDATION; UPLAND; FLUXES; N2O; CH4;
D O I
10.1007/s10705-015-9722-5
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil carbon dioxide (CO2) and methane (CH4) emissions, as well as runoff and leaching are major pathways of soil organic carbon (SOC) loss, which affect SOC sequestration in croplands. However, fluxes and relationships of the four pathways are still poorly understood. Static chamber-GC techniques were used to measure soil heterotrophic respiration rate and CH4 emission flux on hillslope upland of Regosol soil in Southwest China under traditional mineral fertilizer treatment from 2010 to 2012. Synchronously, SOC loss flux via overland flow, leaching and sediment was measured using free-drained lysimeters (8 m x 4 m). Average annual cumulative soil CO2 emission and CH4 uptake fluxes were 462.8 +/- A 52.2 and -1.1 +/- A 0.16 g cm(-2). Average annual cumulative dissolved organic carbon (DOC) loss fluxes via overland flow and leaching were 0.16 +/- A 0.03 and 0.92 +/- A 0.08 g cm(-2), respectively and organic C loss via sediment was 2.2 +/- A 0.3 g cm(-2). Relationship between DOC loss fluxes and soil heterotrophic respiration rates under natural rainfall events could be described by a significant exponential decay function (R = -0.63, P < 0.01). Moreover, a significantly negative correlation was also found between DOC loss flux and soil DOC content in topsoil at 15 cm depth (R = -0.75, P < 0.05). In conclusion, DOC loss decreases soil DOC content and is an underrated negative regulating factor of soil CO2 emission, especially in the regions where high DOC losses occur.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 50 条
[21]   Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate* [J].
Mohammed, Safwan ;
Mirzaei, Morad ;
Toro, Agnes Pappne ;
Anari, Manouchehr Gorji ;
Moghiseh, Ebrahim ;
Asadi, Hossein ;
Szabo, Szilard ;
Kakuszi-Szeles, Adrienn ;
Harsanyi, Endre .
IRRIGATION AND DRAINAGE, 2022, 71 (01) :228-240
[22]   Impact of straw-biochar amendments on microbial activity and soil carbon dynamics in wheat-maize system [J].
Bai, Jinze ;
Huang, Yuming ;
Bai, Yuxin ;
Chen, Danyang ;
Haider, Shahzad ;
Song, Jiajie ;
Moreira, Bruno Rafael De Almeida ;
Ren, Guangxin ;
Yang, Gaihe ;
Feng, Yongzhong ;
Wang, Xing ;
Yadav, Sudhir .
SOIL & TILLAGE RESEARCH, 2024, 244
[23]   Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest [J].
Davidson, EA ;
Ishida, FY ;
Nepstad, DC .
GLOBAL CHANGE BIOLOGY, 2004, 10 (05) :718-730
[24]   Deficit irrigation effectively reduces soil carbon dioxide emissions from wheat fields in Northwest China [J].
Hou, Huijing ;
Yang, Yaqin ;
Han, Zhengdi ;
Cai, Huanjie ;
Li, Zhanchao .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2019, 99 (12) :5401-5408
[25]   Soil carbon dioxide emissions from a rubber plantation on tropical peat [J].
Wakhid, Nur ;
Hirano, Takashi ;
Okimoto, Yosuke ;
Nurzakiah, Siti ;
Nursyamsi, Dedi .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 581 :857-865
[26]   Water and nitrogen availability define emissions of carbon dioxide and nitrogen oxides from desert soil differently [J].
Osei-Yeboah, Martha ;
Grabovsky, Vasily I. ;
Agam, Nurit ;
Gelfand, Ilya .
SOIL BIOLOGY & BIOCHEMISTRY, 2024, 195
[27]   Dissolved organic carbon leaching from montane grasslands under contrasting climate, soil and management conditions [J].
Fu, Jin ;
Gasche, Rainer ;
Wang, Na ;
Lu, Haiyan ;
Butterbach-Bahl, Klaus ;
Kiese, Ralf .
BIOGEOCHEMISTRY, 2019, 145 (1-2) :47-61
[28]   Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest [J].
Davidson, Eric A. ;
Nepstad, Daniel C. ;
Ishida, Francoise Yoko ;
Brando, Paulo M. .
GLOBAL CHANGE BIOLOGY, 2008, 14 (11) :2582-2590
[29]   Soil carbon dioxide emissions from the Mojave desert: Isotopic evidence for a carbonate source [J].
Soper, Fiona M. ;
McCalley, Carmody K. ;
Sparks, Kimberlee ;
Sparks, Jed P. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (01) :245-251
[30]   Streambed Organic Matter Controls on Carbon Dioxide and Methane Emissions from Streams [J].
Romeijn, Paul ;
Comer-Warner, Sophie A. ;
Ullah, Sami ;
Hannah, David M. ;
Krause, Stefan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (05) :2364-2374