Finiteness of the Spectrum of Boundary Value Problems

被引:3
作者
Akhtyamov, A. M. [1 ,2 ]
机构
[1] Bashkir State Univ, Ufa 450076, Russia
[2] Russian Acad Sci, Mavlyutov Inst Mech, Ural Sci Ctr, Ufa 450054, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0012266119010154
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider boundary value problems with spectral parameter polynomially occurring in the differential equation or the boundary conditions. It is shown that some of these problems have a prescribed finite spectrum. A wide class of boundary value problems which do not have finite spectrum exist is found.
引用
收藏
页码:142 / 144
页数:3
相关论文
共 9 条
[1]   How to Change a Boundary Condition in a Problem to Make the Problem Have a Prescribed Spectrum [J].
Akhtyamov, A. M. .
DIFFERENTIAL EQUATIONS, 2014, 50 (04) :546-547
[2]  
[Anonymous], AZERB J MATH
[3]   Determination of the structure of the spectrum of regular boundary value problems for differential equations by VA Il'in's method of anti-a priori estimates [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DOKLADY MATHEMATICS, 2008, 78 (03) :913-915
[4]   SPECTRAL THEORY OF 2-POINT DIFFERENTIAL-OPERATORS DETERMINED BY -D2 .1. SPECTRAL PROPERTIES [J].
LANG, P ;
LOCKER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 141 (02) :538-558
[5]  
Lidskii V.B., 1968, MAT SBORNIK, V75, P558
[6]  
Lidskiy V.B., 1967, FUNCTIONAL ANAL, V1, P52
[7]  
Locker J., 2008, MEMOIRS AM MATH SOC
[8]  
Naimark M.A, 1969, LINEINYE DIFFERENTSI
[9]   Regular and completely regular differential operators [J].
Shiryaev, E. A. ;
Shkalikov, A. A. .
MATHEMATICAL NOTES, 2007, 81 (3-4) :566-570