Violation of the entropic area law for fermions

被引:368
作者
Wolf, MM [1 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevLett.96.010404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the scaling of the entanglement entropy in an infinite translational invariant fermionic system of any spatial dimension. The states under consideration are ground states and excitations of tight-binding Hamiltonians with arbitrary interactions. We show that the entropy of a finite region typically scales with the area of the surface times a logarithmic correction. Thus, in contrast with analogous bosonic systems, the entropic area law is violated for fermions. The relation between the entanglement entropy and the structure of the Fermi surface is discussed, and it is proven that the presented scaling law holds whenever the Fermi surface is finite. This is, in particular, true for all ground states of Hamiltonians with finite range interactions.
引用
收藏
页数:4
相关论文
共 35 条
  • [1] AZBEL MY, 1964, SOV PHYS JETP-USSR, V19, P634
  • [2] BLACK HOLES AND ENTROPY
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1973, 7 (08) : 2333 - 2346
  • [3] QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES
    BOMBELLI, L
    KOUL, RK
    LEE, J
    SORKIN, RD
    [J]. PHYSICAL REVIEW D, 1986, 34 (02): : 373 - 383
  • [4] BCS-like modewise entanglement of fermion Gaussian states
    Botero, A
    Reznik, B
    [J]. PHYSICS LETTERS A, 2004, 331 (1-2) : 39 - 44
  • [5] The holographic principle
    Bousso, R
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (03) : 825 - 874
  • [6] Bravyi S, 2005, QUANTUM INF COMPUT, V5, P216
  • [7] Fermionic quantum computation
    Bravyi, SB
    Kitaev, AY
    [J]. ANNALS OF PHYSICS, 2002, 298 (01) : 210 - 226
  • [8] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [9] FANNES M, MATHPH0306055, P21907
  • [10] GIOEV D, QUANTPH0504151