Flexible scintillation sensors for the detection of thermal neutrons based on siloxane 6LiF containing composites: Role of 6LiF crystals size and dispersion

被引:14
作者
Carturan, S. M. [1 ,2 ]
Vesco, M. [1 ,2 ]
Bonesso, I [1 ]
Quaranta, A. [3 ,4 ]
Maggioni, G. [1 ,2 ]
Stevanato, L. [1 ]
Zanazzi, E. [3 ,4 ]
Marchi, T. [2 ]
Fabris, D. [5 ]
Cinausero, M. [2 ]
Pino, F. [1 ,2 ]
Gramegna, F. [2 ]
机构
[1] Univ Padua, Dept Phys & Astron, Via Marzolo 8, Padua, Italy
[2] INFN, Lab Nazl Legnaro, Viale Univ 2, Legnaro, Italy
[3] Univ Trento, Dept Ind Engn, Via Sommarive 9, Povo, Trento, Italy
[4] TIFPA, Via Sommarive 14, Povo, Trento, Italy
[5] INFN, Sect Padova, Via Marzolo 8, Padua, Italy
关键词
Scintillation sensor; Thermal neutron detector; Flexible detector; Nanoparticle synthesis; PULSE-SHAPE DISCRIMINATION;
D O I
10.1016/j.nima.2019.01.088
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The detection of thermal neutrons is increasingly important for several fields of interest, so new versatile, manageable and adaptable detectors are needed for applications in different environments and situations. To date, scintillators for thermal neutrons available on the market are fragile and with low adaptability. In this work, flexible and robust thermal neutron scintillators with improved properties as compared to commercial ZnS:Ag based phosphors are produced. The scintillators are produced by mixing ZnS:Ag powder and (LiF)-Li-6 nano-crystals in polysiloxane binders. (LiF)-Li-6 nano-crystals are synthesized by co-precipitation method, and the detection efficiency is optimized by tuning the crystal size through different solvent/co-solvent ratios. Then, the detection yield to thermal neutrons is investigated as related both to the crystal size and to the binder. Two different siloxanes, either with pendant phenyl groups or with aliphatic groups are used, the former being intrinsically fluorescent and with higher polarizability than the latter. The response to gamma-rays is also evaluated. Lastly, the right combination of base resin and (LiF)-Li-6 crystals size allows to produce flexible scintillators for thermal neutrons with performances comparable to the commercial standard and with higher mechanical robustness and stability.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 17 条
[1]   A novel segmented-scintillator antineutrino detector [J].
Abreu, Y. ;
Amhis, Y. ;
Arnold, L. ;
Ban, G. ;
Beaumont, W. ;
Bongrand, M. ;
Boursette, D. ;
Buhour, J. M. ;
Castle, B. C. ;
Clark, K. ;
Coupe, B. ;
Cucoanes, A. S. ;
Cussans, D. ;
De Roeck, A. ;
D'Hondt, J. ;
Durand, D. ;
Fallot, M. ;
Fresneau, S. ;
Ghys, L. ;
Giot, L. ;
Guillon, B. ;
Guilloux, G. ;
Ihantola, S. ;
Janssen, X. ;
Kalcheva, S. ;
Kalousis, L. N. ;
Koonen, E. ;
Labare, M. ;
Lehaut, G. ;
Mermans, J. ;
Michiels, I. ;
Moortgat, C. ;
Newbold, D. ;
Park, J. ;
Petridis, K. ;
Pinera, I. a ;
Pommery, G. ;
Popescu, L. ;
Pronost, G. ;
Rademacker, J. ;
Reynolds, A. ;
Ryckbosch, D. ;
Ryder, N. ;
Saunders, D. ;
Shitov, Yu. A. ;
Schune, M. -H. ;
Scovell, P. R. ;
Simard, L. ;
Vacheret, A. ;
Van Dyck, S. .
JOURNAL OF INSTRUMENTATION, 2017, 12
[2]   Synthesis and characterization of nano- and microcrystalline cubes of pure and Ag-doped LiF [J].
Alharbi, Najlaa D. ;
Salah, Numan ;
Habib, Sami S. ;
Alarfaj, Esam .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (03)
[3]   Production of high-intensity RIB at SPES [J].
Andrighetto, A. ;
Biasetto, L. ;
Manzolaro, M. ;
Scarpa, D. ;
Montano, J. ;
Stanescu, J. ;
Benetti, P. ;
Cristofolini, I. ;
Carturan, M. S. ;
Colombo, P. ;
di Bernardo, P. ;
Guerzoni, M. ;
Meneghetti, G. ;
Monelli, B.D. ;
Prete, G. ;
Puglierin, G. ;
Tomaselli, A. ;
Zanonato, P. .
NUCLEAR PHYSICS A, 2010, 834 (1-4) :754C-757C
[4]   Thermal neutron detection by entrapping 6LiF nanocrystals in siloxane scintillators [J].
Carturan, S. M. ;
Marchi, T. ;
Maggioni, G. ;
Gramegna, F. ;
Degerlier, M. ;
Cinausero, M. ;
Palma, M. Dalla ;
Quaranta, A. .
APPLICATIONS OF NOVEL SCINTILLATORS FOR RESEARCH AND INDUSTRY (ANSRI 2015), 2015, 620
[5]   Pulse shape discrimination with fast digitizers [J].
Cester, D. ;
Lunardon, M. ;
Nebbia, G. ;
Stevanato, L. ;
Viesti, G. ;
Petrucci, S. ;
Tintori, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 748 :33-38
[6]   Polysiloxanes-based stationary phases containing methoxy-substituted tetraphenyl-phenyl groups for gas chromotographic separations [J].
He, Xinxin ;
Han, Xue ;
Wang, Huan ;
Wang, Bing ;
Wu, Bo .
RSC ADVANCES, 2016, 6 (80) :76514-76523
[7]   Exploring for oil with nuclear physics [J].
Mauborgne, Marie-Laure ;
Allioli, Francoise ;
Stoller, Chris ;
Evans, Mike ;
Manclossi, Mauro ;
Nicoletti, Luisa .
ND 2016: INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, 2017, 146
[8]   Study of the thermal neutron detector ZnS(Ag)/LiF response using digital pulse processing [J].
Pino, F. ;
Stevanato, L. ;
Cester, D. ;
Nebbia, G. ;
Sajo-Bohus, L. ;
Viesti, G. .
JOURNAL OF INSTRUMENTATION, 2015, 10
[9]   Determination of hydrogenous distributions by neutron transmission analysis [J].
Pleinert, H ;
Lehmann, E .
PHYSICA B, 1997, 234 :1030-1032
[10]   Characterization of polysiloxane organic scintillators produced with different phenyl containing blends [J].
Quaranta, A. ;
Carturan, S. ;
Cinausero, M. ;
Marchi, T. ;
Gramegna, F. ;
Degerlier, M. ;
Cemmi, A. ;
Baccaro, S. .
MATERIALS CHEMISTRY AND PHYSICS, 2013, 137 (03) :951-958