Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition

被引:11
|
作者
Chen, Borui [1 ]
Ji, Dengxin [1 ]
Cheney, Alec [1 ]
Zhang, Nan [1 ]
Song, Haomin [1 ]
Zeng, Xie [1 ]
Thomay, Tim [1 ]
Gan, Qiaoqiang [1 ]
Cartwright, Alexander [1 ]
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; nanogap; enhanced field; NANOGAP ARRAYS; PLASMONICS; SPECTROSCOPY; LITHOGRAPHY; FABRICATION; REFLECTION; WAVES;
D O I
10.1088/0957-4484/27/37/374003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic layer lithography is a recently reported new technology to fabricate deep-subwavelength features down to 1-2 nm, based on combinations of electron beam lithography (EBL) and atomic layer deposition (ALD). However, the patterning area is relatively small as limited by EBL, and the fabrication yield is not very high due to technical challenges. Here we report an improved procedure to fabricate flat metallic surfaces with sub-10 nm features based on ALD processes. To demonstrate the scalability of the new manufacturing method, we combine the ALD process with large area optical interference patterning, which is particularly promising for the development of practical applications for nanoelectronics and nanophotonics with extremely strong confinement of electromagnetic fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Controlled synthesis of sub-10 nm, bright, upconverting nanocrystals for bioimaging
    Ostrowski, Alexis D.
    Chan, Emory M.
    Gargas, Daniel J.
    Schuck, P. James
    Milliron, Delia J.
    Cohen, Bruce E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [22] Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas
    Duan, Huigao
    Hu, Hailong
    Hui, Hui Kim
    Shen, Zexiang
    Yang, Joel K. W.
    NANOTECHNOLOGY, 2013, 24 (18)
  • [23] OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps
    Zhou, Xiaozhu
    Shade, Chad M.
    Schmucker, Abrin L.
    Brown, Keith A.
    He, Shu
    Boey, Freddy
    Ma, Jan
    Zhang, Hua
    Mirkin, Chad A.
    NANO LETTERS, 2012, 12 (09) : 4734 - 4737
  • [24] Tunable and Broadband Plasmonic Absorption via Dispersible Nanoantennas with Sub-10 nm Gaps
    Mangelson, Bryan F.
    Park, Daniel J.
    Ku, Jessie C.
    Osberg, Kyle D.
    Schatz, George C.
    Mirkin, Chad A.
    SMALL, 2013, 9 (13) : 2250 - 2254
  • [25] Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition
    Wambold, Raymond A.
    Borst, Benjamin D.
    Qi, Jie
    Weisel, Gary J.
    Willis, Brian G.
    Zimmerman, Darin T.
    JOURNAL OF NANOPHOTONICS, 2016, 10 (02)
  • [26] Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy
    Tian, Cuifeng
    Liu, Zhen
    Jin, Jiehong
    Lebedkin, Sergei
    Huang, Cheng
    You, Hongjun
    Liu, Rui
    Wang, Liqun
    Song, Xiaoping
    Ding, Bingjun
    Barczewski, Matthias
    Schimmel, Thomas
    Fang, Jixiang
    NANOTECHNOLOGY, 2012, 23 (16)
  • [27] Multisegmented Metallic Nanorods: Sub-10 nm Growth, Nanoscale Manipulation, and Subwavelength Imaging
    Ma, Yanhong
    Jiang, Wenyu
    Xu, Yuanqing
    Zhang, Yong
    ADVANCED MATERIALS, 2019, 31 (45)
  • [28] Sub-10 nm crystalline silicon nanostructures by electron beam induced deposition lithography
    Sychugov, I.
    Nakayama, Y.
    Mitsuishi, K.
    NANOTECHNOLOGY, 2010, 21 (28)
  • [29] Sub-10 nm writing: focused electron beam-induced deposition in perspective
    W. F. van Dorp
    Applied Physics A, 2014, 117 : 1615 - 1622
  • [30] Sub-10 nm writing: focused electron beam-induced deposition in perspective
    van Dorp, W. F.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 117 (04): : 1615 - 1622