Extreme diffusion values for non-Gaussian diffusions

被引:10
|
作者
Han, Deren [2 ]
Qi, Liqun [1 ]
Wu, Ed X. [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing, Jiangsu, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2008年 / 23卷 / 05期
关键词
diffusion kurtosis tensors; extreme diffusion values; extreme diffusion directions; anisotropy;
D O I
10.1080/10556780802367171
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new magnetic resonance imaging (MRI) model, called diffusion kurtosis imaging (DKI), was recently proposed, to characterize the non-Gaussian diffusion behaviour in tissues. DKI involves a fourth-order three-dimensional tensor and a second-order three-dimensional tensor. Similar to those in the diffusion tensor imaging (DTI) model, the extreme diffusion values and extreme directions associated to this tensor pair play important roles in DKI. In this paper, we study the properties of the extreme values and directions associated to such tensor pairs. We also present a numerical method and its preliminary computational results.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [41] Non-Gaussian normal diffusion in a fluctuating corrugated channel
    Li, Yunyun
    Marchesoni, Fabio
    Debnath, Debajyoti
    Ghosh, Pulak K.
    PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [42] Anomalous non-Gaussian diffusion in small disordered rings
    Smirnov, AY
    Dubkov, AA
    PHYSICA A, 1996, 232 (1-2): : 145 - 161
  • [43] Being Heterogeneous Is Advantageous: Extreme Brownian Non-Gaussian Searches
    Sposini, Vittoria
    Nampoothiri, Sankaran
    Chechkin, Aleksei
    Orlandini, Enzo
    Seno, Flavio
    Baldovin, Fulvio
    PHYSICAL REVIEW LETTERS, 2024, 132 (11)
  • [44] Non-Gaussian Statistics and Extreme Waves in a Nonlinear Optical Cavity
    Montina, A.
    Bortolozzo, U.
    Residori, S.
    Arecchi, F. T.
    PHYSICAL REVIEW LETTERS, 2009, 103 (17)
  • [45] Non-Gaussian diffusion imaging: a brief practical review
    De Santis, Silvia
    Gabrielli, Andrea
    Palombo, Marco
    Maraviglia, Bruno
    Capuani, Silvia
    MAGNETIC RESONANCE IMAGING, 2011, 29 (10) : 1410 - 1416
  • [46] Non-Gaussian Diffusion MRI for Evaluating Hepatic Fibrosis
    Li, Weiguo
    ACADEMIC RADIOLOGY, 2022, 29 (07) : 964 - 966
  • [47] Non-Gaussian water diffusion in aging white matter
    Coutu, Jean-Philippe
    Chen, J. Jean
    Rosas, H. Diana
    Salat, David H.
    NEUROBIOLOGY OF AGING, 2014, 35 (06) : 1412 - 1421
  • [48] Non-Gaussian normal diffusion in low dimensional systems
    Yin, Qingqing
    Li, Yunyun
    Marchesoni, Fabio
    Nayak, Subhadip
    Ghosh, Pulak K.
    FRONTIERS OF PHYSICS, 2021, 16 (03)
  • [49] Brownian non-Gaussian polymer diffusion in non-static media
    Zhang, Xiao
    Wang, Heng
    Deng, Weihua
    CHAOS, 2024, 34 (12)
  • [50] Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions
    Yi Ye
    Han Qin
    Ming Tian
    Jian-Guo Mi
    Chinese Journal of Polymer Science, 2019, 37 : 719 - 728