Extreme diffusion values for non-Gaussian diffusions

被引:10
|
作者
Han, Deren [2 ]
Qi, Liqun [1 ]
Wu, Ed X. [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing, Jiangsu, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2008年 / 23卷 / 05期
关键词
diffusion kurtosis tensors; extreme diffusion values; extreme diffusion directions; anisotropy;
D O I
10.1080/10556780802367171
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new magnetic resonance imaging (MRI) model, called diffusion kurtosis imaging (DKI), was recently proposed, to characterize the non-Gaussian diffusion behaviour in tissues. DKI involves a fourth-order three-dimensional tensor and a second-order three-dimensional tensor. Similar to those in the diffusion tensor imaging (DTI) model, the extreme diffusion values and extreme directions associated to this tensor pair play important roles in DKI. In this paper, we study the properties of the extreme values and directions associated to such tensor pairs. We also present a numerical method and its preliminary computational results.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [31] TRANSITION FROM GAUSSIAN TO NON-GAUSSIAN FLUCTUATIONS FOR MEAN-FIELD DIFFUSIONS IN SPATIAL INTERACTION
    Lucon, Eric
    Stannat, Wilhelm
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (06): : 3840 - 3909
  • [32] Non-Gaussian extreme waves in the Central North Sea
    Skourup, J
    Hansen, NEO
    Andreasen, KK
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (03): : 146 - 150
  • [33] Characterizing non-Gaussian diffusion by using generalized diffusion tensors
    Liu, CL
    Bammer, R
    Acar, B
    Moseley, ME
    MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (05) : 924 - 937
  • [34] Non-Gaussian properties and their effects on extreme values of wind pressure on the roof of long-span structures
    Song, Jie
    Xu, Wei
    Hu, Gang
    Liang, Shuguo
    Tan, Jian
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 184 : 106 - 115
  • [35] Non-Gaussian behaviour of extrinsic log-values
    Letzepis, N
    Grant, A
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 444 - 444
  • [36] Characterisation of random Gaussian and non-Gaussian stress processes in terms of extreme responses
    Colin, Bruno
    AVE2014 - 4IEME COLLOQUE ANALYSE VIBRATOIRE EXPERIMENTALE / EXPERIMENTAL VIBRATION ANALYSIS, 2015, 20
  • [37] Anomalous non-Gaussian diffusion in small disordered rings
    Smirnov, Anatoly Yu.
    Dubkov, Alexander A.
    Physica A: Statistical Mechanics and its Applications, 1996, 232 (1-2): : 145 - 161
  • [38] Non-Gaussian normal diffusion in low dimensional systems
    Qingqing Yin
    Yunyun Li
    Fabio Marchesoni
    Subhadip Nayak
    Pulak KGhosh
    Frontiers of Physics, 2021, 16 (03) : 102 - 115
  • [39] Non-Gaussian statistics and anomalous diffusion in porous media
    Sen, PN
    PROCESSES WITH LONG-RANGE CORRELATIONS: THEORY AND APPLICATIONS, 2003, 621 : 181 - 192
  • [40] Non-Gaussian normal diffusion in low dimensional systems
    Qingqing Yin
    Yunyun Li
    Fabio Marchesoni
    Subhadip Nayak
    Pulak K. Ghosh
    Frontiers of Physics, 2021, 16