Extreme diffusion values for non-Gaussian diffusions

被引:10
|
作者
Han, Deren [2 ]
Qi, Liqun [1 ]
Wu, Ed X. [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing, Jiangsu, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
OPTIMIZATION METHODS & SOFTWARE | 2008年 / 23卷 / 05期
关键词
diffusion kurtosis tensors; extreme diffusion values; extreme diffusion directions; anisotropy;
D O I
10.1080/10556780802367171
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new magnetic resonance imaging (MRI) model, called diffusion kurtosis imaging (DKI), was recently proposed, to characterize the non-Gaussian diffusion behaviour in tissues. DKI involves a fourth-order three-dimensional tensor and a second-order three-dimensional tensor. Similar to those in the diffusion tensor imaging (DTI) model, the extreme diffusion values and extreme directions associated to this tensor pair play important roles in DKI. In this paper, we study the properties of the extreme values and directions associated to such tensor pairs. We also present a numerical method and its preliminary computational results.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 50 条
  • [1] NON-GAUSSIAN DIFFUSION
    LASKIN, NV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10): : 1565 - 1576
  • [2] Superstatistics and non-Gaussian diffusion
    Ralf Metzler
    The European Physical Journal Special Topics, 2020, 229 : 711 - 728
  • [3] Superstatistics and non-Gaussian diffusion
    Metzler, Ralf
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (05): : 711 - 728
  • [4] Diffusion MRI in Peripheral Nerves: Optimized b Values and the Role of Non-Gaussian Diffusion
    Foesleitner, Olivia
    Sulaj, Alba
    Sturm, Volker
    Kronlage, Moritz
    Godel, Tim
    Preisner, Fabian
    Nawroth, Peter Paul
    Bendszus, Martin
    Heiland, Sabine
    Schwarz, Daniel
    RADIOLOGY, 2022, 302 (01) : 153 - 161
  • [5] Gaussian and non-Gaussian Behaviour of Diffusion Processes
    Robinson, Derek W.
    OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 463 - 481
  • [6] Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion
    Luo, Liang
    Yi, Ming
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [7] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Robert Azencott
    Peng Ren
    Ilya Timofeyev
    Journal of Statistical Physics, 2015, 161 : 1276 - 1298
  • [8] Parametric Estimation from Approximate Data: Non-Gaussian Diffusions
    Azencott, Robert
    Ren, Peng
    Timofeyev, Ilya
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (05) : 1276 - 1298
  • [9] Non-Gaussian Diffusion Near Surfaces
    Alexandre, Arthur
    Lavaud, Maxime
    Fares, Nicolas
    Millan, Elodie
    Louyer, Yann
    Salez, Thomas
    Amarouchene, Yacine
    Guerin, Thomas
    Dean, David S.
    PHYSICAL REVIEW LETTERS, 2023, 130 (07)
  • [10] Non-Gaussian diffusion of mixed origins
    Lanoiselee, Yann
    Grebenkov, Denis S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (30)