Conley-Morse Databases for the Angular Dynamics of Newton's Method on the Plane

被引:11
作者
Bush, Justin [1 ]
Cowan, Wes [1 ]
Harker, Shaun [1 ]
Mischaikow, Konstantin [1 ]
机构
[1] Rutgers State Univ, Hill Ctr, Dept Math, Busch Campus, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Conley-Morse databases; Newton's method; Morse theory; Conley index; computational dynamics; global dynamics; multiparameter dynamical systems;
D O I
10.1137/15M1017971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we showcase the technique of Conley-Morse databases for studying a parameterized family of dynamical systems. The dynamical system of interest arises from considering the limiting behavior of Newton's root-finding method applied to functions f : R-2 -> R-2 when the iterates converge to the origin. Considering the progression of angular orientations gives rise to a self map of the unit circle we call the angular dynamics map. We demonstrate how the technique of Conley-Morse dynamical databases allows us to quickly survey and prove theorems about the global dynamics of the parameterized family of angular dynamics maps.
引用
收藏
页码:736 / 766
页数:31
相关论文
共 20 条
[1]   A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems [J].
Arai, Zin ;
Kalies, William ;
Kokubu, Hiroshi ;
Mischaikow, Konstantin ;
Oka, Hiroe ;
Pilarczyk, Pawel .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03) :757-789
[2]  
Arai Zin., 2012, RIMS Kokyuroku Bessatsu B31: Far-From-Equilibrium Dynamics, P225
[3]  
Blanchard P., 1994, P S APPL MATH, V49, P139, DOI DOI 10.1090/PSAPM/049/1315536
[4]  
BUSH J., 2015, THESIS
[5]   Combinatorial-topological framework for the analysis of global dynamics [J].
Bush, Justin ;
Gameiro, Marcio ;
Harker, Shaun ;
Kokubu, Hiroshi ;
Mischaikow, Konstantin ;
Obayashi, Ippei ;
Pilarczyk, Pawel .
CHAOS, 2012, 22 (04)
[6]  
Conley C. C., 1978, CBMS REG C SER MATH, V38
[7]  
Deuflhard P., 2004, SPRINGER SER COMPUT, V35
[8]  
DUPONT T., 2010, TR201010
[9]   Shift equivalence and the Conley index [J].
Franks, J ;
Richeson, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (07) :3305-3322
[10]  
HARKER S., 2014, FOUND COMPUT MATH, V14, P1