CMU Array: A 3D nanoprinted, fully customizable high-density microelectrode array platform

被引:42
作者
Saleh, Mohammad Sadeq [1 ,7 ]
Ritchie, Sandra M. [1 ]
Nicholas, Mark A. [2 ,3 ,4 ]
Gordon, Hailey L. [2 ]
Hu, Chunshan [1 ]
Jahan, Sanjida [1 ]
Yuan, Bin [1 ]
Bezbaruah, Rriddhiman [1 ]
Reddy, Jay W. [5 ]
Ahmed, Zabir [5 ]
Chamanzar, Maysamreza [5 ]
Yttri, Eric A. [2 ,6 ]
Panat, Rahul P. [1 ,6 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Centerfor Neural Basis Cognit, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[6] Carnegie Mellon Univ, Carnegie Mellon Neurosci Inst, Pittsburgh, PA 15213 USA
[7] Princeton Univ, Dept Mech Engn, Princeton, NJ 08544 USA
基金
美国安德鲁·梅隆基金会;
关键词
ELECTRODE ARRAY; SCALE;
D O I
10.1126/sciadv.abj4853
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microelectrode arrays provide the means to record electrophysiological activity critical to brain research. Despite its fundamental role, there are no means to customize electrode layouts to address specific experimental or clinical needs. Moreover, current electrodes demonstrate substantial limitations in coverage, fragility, and expense. Using a 3D nanoparticle printing approach that overcomes these limitations, we demonstrate the first in vivo recordings from electrodes that make use of the flexibility of the 3D printing process. The customizable and physically robust 3D multi-electrode devices feature high electrode densities (2600 channels/cm2 of footprint) with minimal gross tissue damage and excellent signal-to-noise ratio. This fabrication methodology also allows flexible reconfiguration consisting of different individual shank lengths and layouts, with low overall channel impedances. This is achieved, in part, via custom 3D printed multilayer circuit boards, a fabrication advancement itself that can support several biomedical device possibilities. This effective device design enables both targeted and large-scale recording of electrical signals throughout the brain.
引用
收藏
页数:16
相关论文
共 41 条
  • [1] Development and Characterization of a Sucrose Microneedle Neural Electrode Delivery System
    Apollo, Nicholas V.
    Jiang, Jonathan
    Cheung, Warwick
    Baquier, Sebastien
    Lai, Alan
    Mirebedini, Azadeh
    Foroughi, Javad
    Wallace, Gordon G.
    Shivdasani, Mohit N.
    Prawer, Steven
    Chen, Shou
    Williams, Richard
    Cook, Mark J.
    Nayagam, David A. X.
    Garrett, David J.
    [J]. ADVANCED BIOSYSTEMS, 2018, 2 (02)
  • [2] Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates
    Barz, F.
    Livi, A.
    Lanzilotto, M.
    Maranesi, M.
    Bonini, L.
    Paul, O.
    Ruther, P.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2017, 14 (03)
  • [3] Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals
    Berenyi, Antal
    Somogyvari, Zoltan
    Nagy, Anett J.
    Roux, Lisa
    Long, John D.
    Fujisawa, Shigeyoshi
    Stark, Eran
    Leonardo, Anthony
    Harris, Timothy D.
    Buzsaki, Gyorgy
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (05) : 1132 - 1149
  • [4] Wafer-scale fabrication of penetrating neural microelectrode arrays
    Bhandari, Rajmohan
    Negi, Sandeep
    Solzbacher, Florian
    [J]. BIOMEDICAL MICRODEVICES, 2010, 12 (05) : 797 - 807
  • [5] Chronic recording and electrochemical performance of Utah microelectrode arrays implanted in rat motor cortex
    Black, Bryan J.
    Kanneganti, Aswini
    Joshi-Imre, Alexandra
    Rihani, Rashed
    Chakraborty, Bitan
    Abbott, Justin
    Pancrazio, Joseph J.
    Cogan, Stuart F.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2018, 120 (04) : 2083 - 2090
  • [6] Low-Loss 3-D Multilayer Transmission Lines and Interconnects Fabricated by Additive Manufacturing Technologies
    Cai, Fan
    Chang, Yung-Hang
    Wang, Kan
    Zhang, Chuck
    Wang, Ben
    Papapolymerou, John
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (10) : 3208 - 3216
  • [7] Inkjet printing for materials and devices
    Calvert, P
    [J]. CHEMISTRY OF MATERIALS, 2001, 13 (10) : 3299 - 3305
  • [8] A SILICON-BASED, 3-DIMENSIONAL NEURAL INTERFACE - MANUFACTURING PROCESSES FOR AN INTRACORTICAL ELECTRODE ARRAY
    CAMPBELL, PK
    JONES, KE
    HUBER, RJ
    HORCH, KW
    NORMANN, RA
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1991, 38 (08) : 758 - 768
  • [9] Chen W., 2021, HETEROGENEOUS INTEGR
  • [10] Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation
    Cul, Xinyan Tracy
    Zhou, David Daomin
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2007, 15 (04) : 502 - 508