Maximal, potential and singular type operators on Herz spaces with variable exponents

被引:152
作者
Almeida, Alexandre [1 ]
Drihem, Douadi [2 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810322 Aveiro, Portugal
[2] MSila Univ, Dept Math, Lab Math Pure & Appl, Msila 28000, Algeria
关键词
Herz space; Variable exponent; Embeddings; Sublinear operator; SUBLINEAR-OPERATORS; LEBESGUE SPACES; BOUNDEDNESS; THEOREM;
D O I
10.1016/j.jmaa.2012.04.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate both homogeneous and inhomogeneous Herz spaces where the two main indices are variable exponents. Under natural regularity assumptions on the exponent functions, we prove the boundedness of a wide class of sublinear operators on these spaces, which includes maximal, potential and Calderon-Zygmund operators. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:781 / 795
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1979, Math. Notes, DOI DOI 10.1007/BF01159546
[2]  
[Anonymous], 2009, East Journal on Approximations
[3]  
BAERNSTEIN A, 1985, MEM AM MATH SOC, V53, P1
[4]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[5]  
Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
[6]  
Cruz-Uribe D., 2009, Boll. Unione Mat. Ital. (9), V2, P151
[7]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]   Herz spaces and summability of Fourier transforms [J].
Feichtinger, Hans G. ;
Weisz, Ferenc .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (03) :309-324
[10]   Overview of differential equations with non-standard growth [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Le, Ut V. ;
Nuortio, Matti .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4551-4574