Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations

被引:25
作者
Espinosa-Paredes, G. [1 ]
Polo-Labarrios, M. -A. [1 ,2 ]
Diaz-Gonzalez, L. [3 ]
Vazquez-Rodriguez, A. [1 ]
Espinosa-Martinez, E. -G. [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Area Ingn Recursos Energet, Mexico City 09340, DF, Mexico
[2] Univ Autonoma Mexico, Dept Sistemas Energet, Fac Ingn, Mexico City 04510, DF, Mexico
[3] Univ Autenoma Estado Morelos, Fac Ciencias, Cuernavaca 62209, Morelos, Mexico
关键词
Telegrapher's equation; Anomalous diffusion exponent; Sensitivity analysis; Monte Carlo simulation;
D O I
10.1016/j.anucene.2011.11.023
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The aim of the present work is to evaluate the sensitivity and uncertainty of the anomalous diffusion coefficient in the Fractional Neutron Point Kinetics (FNPK) equations. This analysis was carried out through Monte Carlo simulations of sizes up to 65,000; the size of 50,000 was considered as valid for routine applications. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with anomalous diffusion coefficient as the predictor variable showed statistically valid quadratic relationship for neutronic density and the delayed neutron precursor concentration. The uncertainties were propagated as follows: in a 1% change in the anomalous diffusion exponent the responses for neutron density, and precursor density changed by 0.017% and 0.0000125% for short times, and for long times by 0.012% and 0.000267%, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 11 条
  • [1] [Anonymous], 2000, Simulation modeling and analysis
  • [2] Bevington P.R., 2003, DATA REDUCTION ERROR
  • [3] The numerical solution of linear multi-term fractional differential equations: systems of equations
    Edwards, JT
    Ford, NJ
    Simpson, AC
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (02) : 401 - 418
  • [4] Constitutive laws for the neutron density current
    Espinosa-Paredes, Gilberto
    Morales-Sandoval, Jaime B.
    Vasquez-Rodriguez, Rodolfo
    Espinosa-Martinez, Erick-G.
    [J]. ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) : 1963 - 1967
  • [5] Fractional neutron point kinetics equations for nuclear reactor dynamics
    Espinosa-Paredes, Gilberto
    Polo-Labarrios, Marco-A.
    Espinosa-Martinez, Erick-G.
    del Valle-Gallegos, Edmundo
    [J]. ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 307 - 330
  • [6] Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations
    Espinosa-Paredes, Gilberto
    Verma, Surendra P.
    Vazquez-Rodriguez, Alejandro
    Nunez-Carrera, Alejandro
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2010, 240 (05) : 1050 - 1062
  • [7] CONVENIENT METHOD FOR GENERATING NORMAL VARIABLES
    MARSAGLIA, G
    BRAY, TA
    [J]. SIAM REVIEW, 1964, 6 (03) : 260 - &
  • [9] Matsumoto M., 1998, ACM Transactions on Modeling and Computer Simulation, V8, P3, DOI 10.1145/272991.272995
  • [10] Analysis on the neutron kinetics for a molten salt reactor
    Zhang, D. L.
    Qiu, S. Z.
    Su, G. H.
    Liu, C. L.
    Qian, L. B.
    [J]. PROGRESS IN NUCLEAR ENERGY, 2009, 51 (4-5) : 624 - 636